Skip to contents

This function computes the standardized total effects matrix over a specific time interval \(\Delta t\) using the first-order stochastic differential equation model's drift matrix \(\boldsymbol{\Phi}\) and process noise covariance matrix \(\boldsymbol{\Sigma}\).

Usage

TotalStd(phi, sigma, delta_t)

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

sigma

Numeric matrix. The process noise covariance matrix (\(\boldsymbol{\Sigma}\)).

delta_t

Numeric. Time interval (\(\Delta t\)).

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("TotalStd").

output

The standardized matrix of total effects.

Details

The standardized total effect matrix over a specific time interval \(\Delta t\) is given by $$ \mathrm{Total}^{\ast}_{\Delta t} = \mathbf{S} \left( \exp \left( \Delta t \boldsymbol{\Phi} \right) \right) \mathbf{S}^{-1} $$ where \(\boldsymbol{\Phi}\) denotes the drift matrix, \(\mathbf{S}\) a diagonal matrix with model-implied standard deviations on the diagonals and \(\Delta t\) the time interval.

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0

Author

Ivan Jacob Agaloos Pesigan

Examples

phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma <- matrix(
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
  ),
  nrow = 3
)
delta_t <- 1
TotalStd(
  phi = phi,
  sigma = sigma,
  delta_t = delta_t
)
#>         x      m      y
#> x  0.6998 0.0000 0.0000
#> m  0.6431 0.5999 0.0000
#> y -0.0936 0.2910 0.5001