This function computes the total effects matrix over a specific time interval \(\Delta t\) using the first-order stochastic differential equation model's drift matrix \(\boldsymbol{\Phi}\).
Value
Returns an object
of class ctmedeffect
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- fun
Function used ("Total").
- output
The matrix of total effects.
Details
The total effect matrix over a specific time interval \(\Delta t\) is given by $$ \mathrm{Total}_{\Delta t} = \exp \left( \Delta t \boldsymbol{\Phi} \right) $$ where \(\boldsymbol{\Phi}\) denotes the drift matrix, and \(\Delta t\) the time interval.
Linear Stochastic Differential Equation Model
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) $$ where \(\mathbf{y}_{i, t}\), \(\boldsymbol{\eta}_{i, t}\), and \(\boldsymbol{\varepsilon}_{i, t}\) are random variables and \(\boldsymbol{\nu}\), \(\boldsymbol{\Lambda}\), and \(\boldsymbol{\Theta}\) are model parameters. \(\mathbf{y}_{i, t}\) represents a vector of observed random variables, \(\boldsymbol{\eta}_{i, t}\) a vector of latent random variables, and \(\boldsymbol{\varepsilon}_{i, t}\) a vector of random measurement errors, at time \(t\) and individual \(i\). \(\boldsymbol{\nu}\) denotes a vector of intercepts, \(\boldsymbol{\Lambda}\) a matrix of factor loadings, and \(\boldsymbol{\Theta}\) the covariance matrix of \(\boldsymbol{\varepsilon}\).
An alternative representation of the measurement error is given by $$ \boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) $$ where \(\mathbf{z}_{i, t}\) is a vector of independent standard normal random variables and \( \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} . \)
The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \left( \boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i, t} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} $$ where \(\boldsymbol{\iota}\) is a term which is unobserved and constant over time, \(\boldsymbol{\Phi}\) is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, \(\boldsymbol{\Sigma}\) is the matrix of volatility or randomness in the process, and \(\mathrm{d}\boldsymbol{W}\) is a Wiener process or Brownian motion, which represents random fluctuations.
References
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0
See also
Other Continuous Time Mediation Functions:
BootBeta()
,
BootBetaStd()
,
BootIndirectCentral()
,
BootMed()
,
BootMedStd()
,
BootTotalCentral()
,
DeltaBeta()
,
DeltaBetaStd()
,
DeltaIndirectCentral()
,
DeltaMed()
,
DeltaMedStd()
,
DeltaTotalCentral()
,
Direct()
,
DirectStd()
,
ExpCov()
,
ExpMean()
,
Indirect()
,
IndirectCentral()
,
IndirectStd()
,
MCBeta()
,
MCBetaStd()
,
MCIndirectCentral()
,
MCMed()
,
MCMedStd()
,
MCPhi()
,
MCPhiSigma()
,
MCTotalCentral()
,
Med()
,
MedStd()
,
PosteriorBeta()
,
PosteriorIndirectCentral()
,
PosteriorMed()
,
PosteriorTotalCentral()
,
TotalCentral()
,
TotalStd()
,
Trajectory()
Examples
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
delta_t <- 1
Total(
phi = phi,
delta_t = delta_t
)
#> x m y
#> x 0.6998 0.0000 0.0000
#> m 0.5000 0.5999 0.0000
#> y -0.1000 0.3998 0.5001
phi <- matrix(
data = c(
-6, 5.5, 0, 0,
1.25, -2.5, 5.9, -7.3,
0, 0, -6, 2.5,
5, 0, 0, -6
),
nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)
Total(
phi = phi,
delta_t = delta_t
)
#> y1 y2 y3 y4
#> y1 -0.0200 0.0284 -0.0214 -0.0493
#> y2 -0.0625 -0.0598 0.0252 -0.0117
#> y3 -0.0138 -0.0670 0.0566 0.0595
#> y4 0.0469 0.0767 -0.0310 -0.0171