Posterior Sampling Distribution for the Elements of the Matrix of Lagged Coefficients Over a Specific Time Interval or a Range of Time Intervals
Source:R/cTMed-posterior-beta.R
PosteriorBeta.Rd
This function generates a posterior sampling distribution for the elements of the matrix of lagged coefficients \(\boldsymbol{\beta}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model drift matrix \(\boldsymbol{\Phi}\).
Arguments
- phi
Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)).
phi
should have row and column names pertaining to the variables in the system.- delta_t
Numeric. Time interval (\(\Delta t\)).
- ncores
Positive integer. Number of cores to use. If
ncores = NULL
, use a single core. Consider using multiple cores when number of replicationsR
is a large value.- tol
Numeric. Smallest possible time interval to allow.
Value
Returns an object
of class ctmedmc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- fun
Function used ("PosteriorBeta").
- output
A list the length of which is equal to the length of
delta_t
.
Each element in the output
list has the following elements:
- est
A vector of total, direct, and indirect effects.
- thetahatstar
A matrix of Monte Carlo total, direct, and indirect effects.
Details
See Total()
.
References
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0
See also
Other Continuous Time Mediation Functions:
BootBeta()
,
BootBetaStd()
,
BootIndirectCentral()
,
BootMed()
,
BootMedStd()
,
BootTotalCentral()
,
DeltaBeta()
,
DeltaBetaStd()
,
DeltaIndirectCentral()
,
DeltaMed()
,
DeltaMedStd()
,
DeltaTotalCentral()
,
Direct()
,
DirectStd()
,
ExpCov()
,
ExpMean()
,
Indirect()
,
IndirectCentral()
,
IndirectStd()
,
MCBeta()
,
MCBetaStd()
,
MCIndirectCentral()
,
MCMed()
,
MCMedStd()
,
MCPhi()
,
MCPhiSigma()
,
MCTotalCentral()
,
Med()
,
MedStd()
,
PosteriorIndirectCentral()
,
PosteriorMed()
,
PosteriorTotalCentral()
,
Total()
,
TotalCentral()
,
TotalStd()
,
Trajectory()
Examples
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
data = c(
0.00843, 0.00040, -0.00151,
-0.00600, -0.00033, 0.00110,
0.00324, 0.00020, -0.00061,
0.00040, 0.00374, 0.00016,
-0.00022, -0.00273, -0.00016,
0.00009, 0.00150, 0.00012,
-0.00151, 0.00016, 0.00389,
0.00103, -0.00007, -0.00283,
-0.00050, 0.00000, 0.00156,
-0.00600, -0.00022, 0.00103,
0.00644, 0.00031, -0.00119,
-0.00374, -0.00021, 0.00070,
-0.00033, -0.00273, -0.00007,
0.00031, 0.00287, 0.00013,
-0.00014, -0.00170, -0.00012,
0.00110, -0.00016, -0.00283,
-0.00119, 0.00013, 0.00297,
0.00063, -0.00004, -0.00177,
0.00324, 0.00009, -0.00050,
-0.00374, -0.00014, 0.00063,
0.00495, 0.00024, -0.00093,
0.00020, 0.00150, 0.00000,
-0.00021, -0.00170, -0.00004,
0.00024, 0.00214, 0.00012,
-0.00061, 0.00012, 0.00156,
0.00070, -0.00012, -0.00177,
-0.00093, 0.00012, 0.00223
),
nrow = 9
)
phi <- MCPhi(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
R = 1000L
)$output
# Specific time interval ----------------------------------------------------
PosteriorBeta(
phi = phi,
delta_t = 1
)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> from x to x 1 0.6998 0.0463 1000 0.6151 0.7991
#> from x to m 1 0.4977 0.0345 1000 0.4344 0.5679
#> from x to y 1 -0.1005 0.0307 1000 -0.1602 -0.0410
#> from m to x 1 0.0021 0.0439 1000 -0.0829 0.0894
#> from m to m 1 0.6013 0.0322 1000 0.5393 0.6640
#> from m to y 1 0.3994 0.0283 1000 0.3447 0.4551
#> from y to x 1 0.0009 0.0427 1000 -0.0843 0.0824
#> from y to m 1 0.0000 0.0307 1000 -0.0589 0.0598
#> from y to y 1 0.4997 0.0265 1000 0.4500 0.5523
#>
# Range of time intervals ---------------------------------------------------
posterior <- PosteriorBeta(
phi = phi,
delta_t = 1:5
)
plot(posterior)
# Methods -------------------------------------------------------------------
# PosteriorBeta has a number of methods including
# print, summary, confint, and plot
print(posterior)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> from x to x 1 0.6998 0.0463 1000 0.6151 0.7991
#> from x to m 1 0.4977 0.0345 1000 0.4344 0.5679
#> from x to y 1 -0.1005 0.0307 1000 -0.1602 -0.0410
#> from m to x 1 0.0021 0.0439 1000 -0.0829 0.0894
#> from m to m 1 0.6013 0.0322 1000 0.5393 0.6640
#> from m to y 1 0.3994 0.0283 1000 0.3447 0.4551
#> from y to x 1 0.0009 0.0427 1000 -0.0843 0.0824
#> from y to m 1 0.0000 0.0307 1000 -0.0589 0.0598
#> from y to y 1 0.4997 0.0265 1000 0.4500 0.5523
#>
#> $`2`
#> interval est se R 2.5% 97.5%
#> from x to x 2 0.4907 0.0543 1000 0.3994 0.6117
#> from x to m 2 0.6476 0.0525 1000 0.5522 0.7579
#> from x to y 2 0.0783 0.0347 1000 0.0050 0.1411
#> from m to x 2 0.0031 0.0515 1000 -0.0970 0.1046
#> from m to m 2 0.3626 0.0493 1000 0.2690 0.4606
#> from m to y 2 0.4395 0.0332 1000 0.3789 0.5078
#> from y to x 2 0.0011 0.0516 1000 -0.1025 0.0999
#> from y to m 2 0.0004 0.0497 1000 -0.1008 0.0965
#> from y to y 2 0.2496 0.0306 1000 0.1939 0.3104
#>
#> $`3`
#> interval est se R 2.5% 97.5%
#> from x to x 3 0.3448 0.0547 1000 0.2528 0.4631
#> from x to m 3 0.6336 0.0647 1000 0.5207 0.7680
#> from x to y 3 0.2484 0.0356 1000 0.1777 0.3183
#> from m to x 3 0.0034 0.0500 1000 -0.0930 0.1029
#> from m to m 3 0.2195 0.0594 1000 0.1071 0.3407
#> from m to y 3 0.3641 0.0335 1000 0.3028 0.4321
#> from y to x 3 0.0010 0.0473 1000 -0.0955 0.0913
#> from y to m 3 0.0008 0.0598 1000 -0.1181 0.1113
#> from y to y 3 0.1248 0.0288 1000 0.0711 0.1838
#>
#> $`4`
#> interval est se R 2.5% 97.5%
#> from x to x 4 0.2428 0.0539 1000 0.1526 0.3541
#> from x to m 4 0.5526 0.0716 1000 0.4337 0.7058
#> from x to y 4 0.3425 0.0398 1000 0.2701 0.4224
#> from m to x 4 0.0031 0.0461 1000 -0.0876 0.0980
#> from m to m 4 0.1337 0.0636 1000 0.0143 0.2657
#> from m to y 4 0.2693 0.0351 1000 0.2060 0.3392
#> from y to x 4 0.0008 0.0391 1000 -0.0804 0.0731
#> from y to m 4 0.0009 0.0617 1000 -0.1224 0.1118
#> from y to y 4 0.0626 0.0304 1000 0.0032 0.1251
#>
#> $`5`
#> interval est se R 2.5% 97.5%
#> from x to x 5 0.1714 0.0531 1000 0.0838 0.2841
#> from x to m 5 0.4531 0.0749 1000 0.3274 0.6108
#> from x to y 5 0.3674 0.0449 1000 0.2855 0.4639
#> from m to x 5 0.0027 0.0411 1000 -0.0776 0.0890
#> from m to m 5 0.0819 0.0635 1000 -0.0414 0.2158
#> from m to y 5 0.1876 0.0374 1000 0.1198 0.2662
#> from y to x 5 0.0006 0.0307 1000 -0.0638 0.0584
#> from y to m 5 0.0010 0.0577 1000 -0.1192 0.1073
#> from y to y 5 0.0316 0.0342 1000 -0.0349 0.0988
#>
summary(posterior)
#> effect interval est se R 2.5% 97.5%
#> 1 from x to x 1 0.6997747580 0.04630881 1000 0.615077559 0.79909237
#> 2 from x to m 1 0.4977235070 0.03450318 1000 0.434406622 0.56791660
#> 3 from x to y 1 -0.1004675237 0.03073191 1000 -0.160219435 -0.04098514
#> 4 from m to x 1 0.0021286527 0.04386103 1000 -0.082852223 0.08944692
#> 5 from m to m 1 0.6012676812 0.03216130 1000 0.539291917 0.66398633
#> 6 from m to y 1 0.3993665208 0.02830867 1000 0.344729306 0.45514405
#> 7 from y to x 1 0.0008925094 0.04274947 1000 -0.084349428 0.08239238
#> 8 from y to m 1 -0.0000227856 0.03074610 1000 -0.058850419 0.05980749
#> 9 from y to y 1 0.4997169263 0.02648556 1000 0.449984999 0.55228822
#> 10 from x to x 2 0.4906545242 0.05433336 1000 0.399419871 0.61173690
#> 11 from x to m 2 0.6475616948 0.05246535 1000 0.552153140 0.75786017
#> 12 from x to y 2 0.0782641460 0.03474429 1000 0.004972431 0.14110172
#> 13 from m to x 2 0.0031259059 0.05150021 1000 -0.096990937 0.10462061
#> 14 from m to m 2 0.3625732052 0.04926183 1000 0.268958333 0.46063125
#> 15 from m to y 2 0.4394825317 0.03317360 1000 0.378918829 0.50781142
#> 16 from y to x 2 0.0010705091 0.05162416 1000 -0.102532405 0.09989007
#> 17 from y to m 2 0.0004191363 0.04967283 1000 -0.100770484 0.09654877
#> 18 from y to y 2 0.2496182384 0.03064911 1000 0.193901260 0.31038246
#> 19 from x to x 3 0.3447959364 0.05467864 1000 0.252788824 0.46310472
#> 20 from x to m 3 0.6335664259 0.06465743 1000 0.520666214 0.76798977
#> 21 from x to y 3 0.2484295345 0.03560143 1000 0.177739549 0.31828824
#> 22 from m to x 3 0.0033514648 0.04999419 1000 -0.093038023 0.10287867
#> 23 from m to m 3 0.2195493733 0.05938397 1000 0.107093500 0.34066995
#> 24 from m to y 3 0.3641024074 0.03347521 1000 0.302822411 0.43209314
#> 25 from y to x 3 0.0009727941 0.04734722 1000 -0.095547013 0.09128994
#> 26 from y to m 3 0.0007791430 0.05982904 1000 -0.118056515 0.11127119
#> 27 from y to y 3 0.1247982965 0.02882179 1000 0.071081827 0.18383621
#> 28 from x to x 4 0.2428498616 0.05389348 1000 0.152597586 0.35410705
#> 29 from x to m 4 0.5525503979 0.07158618 1000 0.433719879 0.70584106
#> 30 from x to y 4 0.3425288687 0.03976568 1000 0.270116254 0.42244066
#> 31 from m to x 4 0.0031375797 0.04613214 1000 -0.087630063 0.09803768
#> 32 from m to m 4 0.1336677491 0.06360383 1000 0.014283419 0.26572962
#> 33 from m to y 4 0.2692920919 0.03513585 1000 0.205977318 0.33924884
#> 34 from y to x 4 0.0007937789 0.03909627 1000 -0.080439385 0.07313009
#> 35 from y to m 4 0.0009498124 0.06166868 1000 -0.122390771 0.11181218
#> 36 from y to y 4 0.0625772505 0.03044208 1000 0.003215126 0.12507286
#> 37 from x to x 5 0.1714221013 0.05311600 1000 0.083759930 0.28405495
#> 38 from x to m 5 0.4530949765 0.07494278 1000 0.327425315 0.61079299
#> 39 from x to y 5 0.3674390791 0.04490339 1000 0.285480283 0.46391752
#> 40 from m to x 5 0.0027204770 0.04113404 1000 -0.077637039 0.08897828
#> 41 from m to m 5 0.0819256088 0.06349271 1000 -0.041364783 0.21579696
#> 42 from m to y 5 0.1876370155 0.03736094 1000 0.119828254 0.26616449
#> 43 from y to x 5 0.0006133391 0.03067619 1000 -0.063841060 0.05843968
#> 44 from y to m 5 0.0009647481 0.05769467 1000 -0.119229212 0.10730828
#> 45 from y to y 5 0.0315704856 0.03418778 1000 -0.034923849 0.09883701
confint(posterior, level = 0.95)
#> effect interval 2.5 % 97.5 %
#> 1 from x to x 1 0.615077559 0.79909237
#> 2 from x to m 1 0.434406622 0.56791660
#> 3 from x to y 1 -0.160219435 -0.04098514
#> 4 from x to x 2 0.399419871 0.61173690
#> 5 from x to m 2 0.552153140 0.75786017
#> 6 from x to y 2 0.004972431 0.14110172
#> 7 from x to x 3 0.252788824 0.46310472
#> 8 from x to m 3 0.520666214 0.76798977
#> 9 from x to y 3 0.177739549 0.31828824
#> 10 from x to x 4 0.152597586 0.35410705
#> 11 from x to m 4 0.433719879 0.70584106
#> 12 from x to y 4 0.270116254 0.42244066
#> 13 from x to x 5 0.083759930 0.28405495
#> 14 from x to m 5 0.327425315 0.61079299
#> 15 from x to y 5 0.285480283 0.46391752
plot(posterior)