Skip to contents

This function computes the delta method sampling variance-covariance matrix for the total effect centrality over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model's drift matrix \(\boldsymbol{\Phi}\).

Usage

DeltaTotalCentral(phi, vcov_phi_vec, delta_t, ncores = NULL, tol = 0.01)

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

vcov_phi_vec

Numeric matrix. The sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).

delta_t

Vector of positive numbers. Time interval (\(\Delta t\)).

ncores

Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when the length of delta_t is long.

tol

Numeric. Smallest possible time interval to allow.

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("DeltaTotalCentral").

output

A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t

Time interval.

jacobian

Jacobian matrix.

est

Estimated total effect centrality.

vcov

Sampling variance-covariance matrix of estimated total effect centrality.

Details

See TotalCentral() more details.

Delta Method

Let \(\boldsymbol{\theta}\) be \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\), that is, the elements of the \(\boldsymbol{\Phi}\) matrix in vector form sorted column-wise. Let \(\hat{\boldsymbol{\theta}}\) be \(\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)\). By the multivariate central limit theory, the function \(\mathbf{g}\) using \(\hat{\boldsymbol{\theta}}\) as input can be expressed as:

$$ \sqrt{n} \left( \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) - \mathbf{g} \left( \boldsymbol{\theta} \right) \right) \xrightarrow[]{ \mathrm{D} } \mathcal{N} \left( 0, \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime} \right) $$

where \(\mathbf{J}\) is the matrix of first-order derivatives of the function \(\mathbf{g}\) with respect to the elements of \(\boldsymbol{\theta}\) and \(\boldsymbol{\Gamma}\) is the asymptotic variance-covariance matrix of \(\hat{\boldsymbol{\theta}}\).

From the former, we can derive the distribution of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) as follows:

$$ \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) \approx \mathcal{N} \left( \mathbf{g} \left( \boldsymbol{\theta} \right) , n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime} \right) $$

The uncertainty associated with the estimator \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) is, therefore, given by \(n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime}\) . When \(\boldsymbol{\Gamma}\) is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of \(\hat{\boldsymbol{\theta}}\), that is, \(\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)\) for \(n^{-1} \boldsymbol{\Gamma}\). Therefore, the sampling variance-covariance matrix of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) is given by

$$ \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) \approx \mathcal{N} \left( \mathbf{g} \left( \boldsymbol{\theta} \right) , \mathbf{J} \hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right) \mathbf{J}^{\prime} \right) . $$

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0

Author

Ivan Jacob Agaloos Pesigan

Examples

phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
    0.00495, 0.00024, -0.00093,
    0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
    0.00024, 0.00214, 0.00012,
    -0.00061, 0.00012, 0.00156,
    0.00070, -0.00012, -0.00177,
    -0.00093, 0.00012, 0.00223
  ),
  nrow = 9
)

# Specific time interval ----------------------------------------------------
DeltaTotalCentral(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1
)
#> 
#> Total Effect Centrality
#> 
#> $`1`
#>   interval    est     se      z p    2.5%  97.5%
#> x        1 0.4000 0.0485 8.2517 0  0.3050 0.4950
#> m        1 0.3998 0.0411 9.7184 0  0.3192 0.4805
#> y        1 0.0000 0.0650 0.0000 1 -0.1273 0.1273
#> 

# Range of time intervals ---------------------------------------------------
delta <- DeltaTotalCentral(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1:5
)
plot(delta)




# Methods -------------------------------------------------------------------
# DeltaTotalCentral has a number of methods including
# print, summary, confint, and plot
print(delta)
#> 
#> Total Effect Centrality
#> 
#> $`1`
#>   interval    est     se      z p    2.5%  97.5%
#> x        1 0.4000 0.0485 8.2517 0  0.3050 0.4950
#> m        1 0.3998 0.0411 9.7184 0  0.3192 0.4805
#> y        1 0.0000 0.0650 0.0000 1 -0.1273 0.1273
#> 
#> $`2`
#>   interval    est     se       z p    2.5%  97.5%
#> x        2 0.7298 0.0680 10.7288 0  0.5965 0.8631
#> m        2 0.4398 0.0529  8.3137 0  0.3361 0.5435
#> y        2 0.0000 0.0951  0.0000 1 -0.1863 0.1863
#> 
#> $`3`
#>   interval    est     se       z p    2.5%  97.5%
#> x        3 0.8855 0.0855 10.3526 0  0.7179 1.0532
#> m        3 0.3638 0.0606  6.0028 0  0.2450 0.4826
#> y        3 0.0000 0.1022  0.0000 1 -0.2004 0.2004
#> 
#> $`4`
#>   interval    est     se      z p    2.5%  97.5%
#> x        4 0.8970 0.0999 8.9763 0  0.7012 1.0929
#> m        4 0.2683 0.0659 4.0735 0  0.1392 0.3973
#> y        4 0.0000 0.0961 0.0000 1 -0.1883 0.1883
#> 
#> $`5`
#>   interval    est     se      z      p    2.5%  97.5%
#> x        5 0.8204 0.1098 7.4745 0.0000  0.6052 1.0355
#> m        5 0.1859 0.0679 2.7368 0.0062  0.0528 0.3191
#> y        5 0.0000 0.0836 0.0000 1.0000 -0.1638 0.1638
#> 
summary(delta)
#>    variable interval       est         se         z            p        2.5%
#> 1         x        1 0.3999957 0.04847428  8.251711 1.561425e-16  0.30498791
#> 2         m        1 0.3998356 0.04114215  9.718394 2.517201e-22  0.31919849
#> 3         y        1 0.0000000 0.06497353  0.000000 1.000000e+00 -0.12734577
#> 4         x        2 0.7297791 0.06802060 10.728796 7.456131e-27  0.59646118
#> 5         m        2 0.4398068 0.05290118  8.313742 9.273073e-17  0.33612237
#> 6         y        2 0.0000000 0.09507733  0.000000 1.000000e+00 -0.18634813
#> 7         x        3 0.8855303 0.08553733 10.352560 4.074439e-25  0.71788022
#> 8         m        3 0.3638264 0.06060970  6.002775 1.939728e-09  0.24503357
#> 9         y        3 0.0000000 0.10222877  0.000000 1.000000e+00 -0.20036471
#> 10        x        4 0.8970359 0.09993352  8.976326 2.799578e-19  0.70116982
#> 11        m        4 0.2682593 0.06585448  4.073516 4.630857e-05  0.13918690
#> 12        y        4 0.0000000 0.09608206  0.000000 1.000000e+00 -0.18831738
#> 13        x        5 0.8203630 0.10975492  7.474499 7.749877e-14  0.60524733
#> 14        m        5 0.1859320 0.06793801  2.736788 6.204218e-03  0.05277591
#> 15        y        5 0.0000000 0.08357313  0.000000 1.000000e+00 -0.16380032
#>        97.5%
#> 1  0.4950036
#> 2  0.4804728
#> 3  0.1273458
#> 4  0.8630970
#> 5  0.5434912
#> 6  0.1863481
#> 7  1.0531804
#> 8  0.4826192
#> 9  0.2003647
#> 10 1.0929020
#> 11 0.3973317
#> 12 0.1883174
#> 13 1.0354787
#> 14 0.3190880
#> 15 0.1638003
confint(delta, level = 0.95)
#>    variable interval       2.5 %    97.5 %
#> 1         x        1  0.30498791 0.4950036
#> 2         m        1  0.31919849 0.4804728
#> 3         y        1 -0.12734577 0.1273458
#> 4         x        2  0.59646118 0.8630970
#> 5         m        2  0.33612237 0.5434912
#> 6         y        2 -0.18634813 0.1863481
#> 7         x        3  0.71788022 1.0531804
#> 8         m        3  0.24503357 0.4826192
#> 9         y        3 -0.20036471 0.2003647
#> 10        x        4  0.70116982 1.0929020
#> 11        m        4  0.13918690 0.3973317
#> 12        y        4 -0.18831738 0.1883174
#> 13        x        5  0.60524733 1.0354787
#> 14        m        5  0.05277591 0.3190880
#> 15        y        5 -0.16380032 0.1638003
plot(delta)