Monte Carlo Sampling Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals
Source:R/cTMed-mc-med.R
MCMed.Rd
This function generates a Monte Carlo method sampling distribution of the total, direct and indirect effects of the independent variable \(X\) on the dependent variable \(Y\) through mediator variables \(\mathbf{m}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model drift matrix \(\boldsymbol{\Phi}\).
Usage
MCMed(
phi,
vcov_phi_vec,
delta_t,
from,
to,
med,
R,
test_phi = TRUE,
ncores = NULL,
seed = NULL
)
Arguments
- phi
Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)).
phi
should have row and column names pertaining to the variables in the system.- vcov_phi_vec
Numeric matrix. The sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).
- delta_t
Numeric. Time interval (\(\Delta t\)).
- from
Character string. Name of the independent variable \(X\) in
phi
.- to
Character string. Name of the dependent variable \(Y\) in
phi
.- med
Character vector. Name/s of the mediator variable/s in
phi
.- R
Positive integer. Number of replications.
- test_phi
Logical. If
test_phi = TRUE
, the function tests the stability of the generated drift matrix \(\boldsymbol{\Phi}\). If the test returnsFALSE
, the function generates a new drift matrix \(\boldsymbol{\Phi}\) and runs the test recursively until the test returnsTRUE
.- ncores
Positive integer. Number of cores to use. If
ncores = NULL
, use a single core. Consider using multiple cores when number of replicationsR
is a large value.- seed
Random seed.
Value
Returns an object
of class ctmedmc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- fun
Function used ("MCMed").
- output
A list with length of
length(delta_t)
.
Each element in the output
list has the following elements:
- est
A vector of total, direct, and indirect effects.
- thetahatstar
A matrix of Monte Carlo total, direct, and indirect effects.
Details
See Total()
,
Direct()
, and
Indirect()
for more details.
Monte Carlo Method
Let \(\boldsymbol{\theta}\) be \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\), that is, the elements of the \(\boldsymbol{\Phi}\) matrix in vector form sorted column-wise. Let \(\hat{\boldsymbol{\theta}}\) be \(\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)\). Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters. $$ \hat{\boldsymbol{\theta}} \sim \mathcal{N} \left( \boldsymbol{\theta}, \mathbb{V} \left( \hat{\boldsymbol{\theta}} \right) \right) $$ Using this distributional assumption, a sampling distribution of \(\hat{\boldsymbol{\theta}}\) which we refer to as \(\hat{\boldsymbol{\theta}}^{\ast}\) can be generated by replacing the population parameters with sample estimates, that is, $$ \hat{\boldsymbol{\theta}}^{\ast} \sim \mathcal{N} \left( \hat{\boldsymbol{\theta}}, \hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right) \right) . $$ Let \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) be a parameter that is a function of the estimated parameters. A sampling distribution of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) , which we refer to as \(\mathbf{g} \left( \hat{\boldsymbol{\theta}}^{\ast} \right)\) , can be generated by using the simulated estimates to calculate \(\mathbf{g}\). The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to \(100 \left( 1 - \alpha \right) \%\) are the confidence intervals.
References
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0
See also
Other Continuous Time Mediation Functions:
DeltaBeta()
,
DeltaIndirectCentral()
,
DeltaMed()
,
DeltaTotalCentral()
,
Direct()
,
Indirect()
,
IndirectCentral()
,
MCBeta()
,
MCIndirectCentral()
,
MCPhi()
,
MCTotalCentral()
,
Med()
,
PosteriorBeta()
,
PosteriorIndirectCentral()
,
PosteriorMed()
,
PosteriorPhi()
,
PosteriorTotalCentral()
,
Total()
,
TotalCentral()
,
Trajectory()
Examples
set.seed(42)
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
data = c(
0.002704274, -0.001475275, 0.000949122,
-0.001619422, 0.000885122, -0.000569404,
0.00085493, -0.000465824, 0.000297815,
-0.001475275, 0.004428442, -0.002642303,
0.000980573, -0.00271817, 0.001618805,
-0.000586921, 0.001478421, -0.000871547,
0.000949122, -0.002642303, 0.006402668,
-0.000697798, 0.001813471, -0.004043138,
0.000463086, -0.001120949, 0.002271711,
-0.001619422, 0.000980573, -0.000697798,
0.002079286, -0.001152501, 0.000753,
-0.001528701, 0.000820587, -0.000517524,
0.000885122, -0.00271817, 0.001813471,
-0.001152501, 0.00342605, -0.002075005,
0.000899165, -0.002532849, 0.001475579,
-0.000569404, 0.001618805, -0.004043138,
0.000753, -0.002075005, 0.004984032,
-0.000622255, 0.001634917, -0.003705661,
0.00085493, -0.000586921, 0.000463086,
-0.001528701, 0.000899165, -0.000622255,
0.002060076, -0.001096684, 0.000686386,
-0.000465824, 0.001478421, -0.001120949,
0.000820587, -0.002532849, 0.001634917,
-0.001096684, 0.003328692, -0.001926088,
0.000297815, -0.000871547, 0.002271711,
-0.000517524, 0.001475579, -0.003705661,
0.000686386, -0.001926088, 0.004726235
),
nrow = 9
)
# Specific time interval ----------------------------------------------------
MCMed(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1,
from = "x",
to = "y",
med = "m",
R = 100L # use a large value for R in actual research
)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> total 1 -0.1000 0.0342 100 -0.1666 -0.0440
#> direct 1 -0.2675 0.0440 100 -0.3567 -0.1863
#> indirect 1 0.1674 0.0201 100 0.1273 0.2006
#>
# Range of time intervals ---------------------------------------------------
mc <- MCMed(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1:5,
from = "x",
to = "y",
med = "m",
R = 100L # use a large value for R in actual research
)
plot(mc)
# Methods -------------------------------------------------------------------
# MCMed has a number of methods including
# print, summary, confint, and plot
print(mc)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> total 1 -0.1000 0.0340 100 -0.1648 -0.0320
#> direct 1 -0.2675 0.0471 100 -0.3397 -0.1738
#> indirect 1 0.1674 0.0201 100 0.1239 0.1982
#>
#> $`2`
#> interval est se R 2.5% 97.5%
#> total 2 0.0799 0.0352 100 0.0110 0.1542
#> direct 2 -0.3209 0.0555 100 -0.4178 -0.2099
#> indirect 2 0.4008 0.0413 100 0.3090 0.4663
#>
#> $`3`
#> interval est se R 2.5% 97.5%
#> total 3 0.2508 0.0337 100 0.1884 0.3100
#> direct 3 -0.2914 0.0524 100 -0.3863 -0.1918
#> indirect 3 0.5423 0.0523 100 0.4351 0.6286
#>
#> $`4`
#> interval est se R 2.5% 97.5%
#> total 4 0.3449 0.0324 100 0.2823 0.3989
#> direct 4 -0.2374 0.0464 100 -0.3272 -0.1538
#> indirect 4 0.5823 0.0575 100 0.4668 0.6888
#>
#> $`5`
#> interval est se R 2.5% 97.5%
#> total 5 0.3693 0.0325 100 0.3091 0.4402
#> direct 5 -0.1828 0.0402 100 -0.2636 -0.1132
#> indirect 5 0.5521 0.0594 100 0.4404 0.6682
#>
summary(mc)
#> effect interval est se R 2.5% 97.5%
#> 1 total 1 -0.1000384 0.03395899 100 -0.16476025 -0.0320114
#> 2 direct 1 -0.2674539 0.04709743 100 -0.33969758 -0.1737522
#> 3 indirect 1 0.1674155 0.02007626 100 0.12388402 0.1982442
#> 4 total 2 0.0799008 0.03520320 100 0.01098553 0.1541882
#> 5 direct 2 -0.3209035 0.05552653 100 -0.41779752 -0.2098965
#> 6 indirect 2 0.4008043 0.04125368 100 0.30898862 0.4662702
#> 7 total 3 0.2508138 0.03368900 100 0.18841270 0.3099660
#> 8 direct 3 -0.2914426 0.05239901 100 -0.38632534 -0.1918376
#> 9 indirect 3 0.5422564 0.05233930 100 0.43511469 0.6285914
#> 10 total 4 0.3449279 0.03244313 100 0.28231133 0.3989232
#> 11 direct 4 -0.2373900 0.04644744 100 -0.32719487 -0.1538166
#> 12 indirect 4 0.5823179 0.05746986 100 0.46682812 0.6888180
#> 13 total 5 0.3692538 0.03254938 100 0.30907920 0.4401860
#> 14 direct 5 -0.1828447 0.04019984 100 -0.26357998 -0.1131929
#> 15 indirect 5 0.5520985 0.05939646 100 0.44035670 0.6682153
confint(mc, level = 0.95)
#> effect interval 2.5 % 97.5 %
#> 1 total 1 -0.16476025 -0.0320114
#> 2 direct 1 -0.33969758 -0.1737522
#> 3 indirect 1 0.12388402 0.1982442
#> 4 total 2 0.01098553 0.1541882
#> 5 direct 2 -0.41779752 -0.2098965
#> 6 indirect 2 0.30898862 0.4662702
#> 7 total 3 0.18841270 0.3099660
#> 8 direct 3 -0.38632534 -0.1918376
#> 9 indirect 3 0.43511469 0.6285914
#> 10 total 4 0.28231133 0.3989232
#> 11 direct 4 -0.32719487 -0.1538166
#> 12 indirect 4 0.46682812 0.6888180
#> 13 total 5 0.30907920 0.4401860
#> 14 direct 5 -0.26357998 -0.1131929
#> 15 indirect 5 0.44035670 0.6682153