Posterior Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals
Source:R/cTMed-posterior-med.R
PosteriorMed.Rd
This function generates a posterior distribution of the total, direct and indirect effects of the independent variable \(X\) on the dependent variable \(Y\) through mediator variables \(\mathbf{m}\) over a specific time interval \(\Delta t\) or a range of time intervals using the posterior distribution of the first-order stochastic differential equation model drift matrix \(\boldsymbol{\Phi}\).
Arguments
- phi
List of numeric matrices. Each element of the list is a sample from the posterior distribution of the drift matrix (\(\boldsymbol{\Phi}\)). Each matrix should have row and column names pertaining to the variables in the system.
- delta_t
Numeric. Time interval (\(\Delta t\)).
- from
Character string. Name of the independent variable \(X\) in
phi
.- to
Character string. Name of the dependent variable \(Y\) in
phi
.- med
Character vector. Name/s of the mediator variable/s in
phi
.- ncores
Positive integer. Number of cores to use. If
ncores = NULL
, use a single core. Consider using multiple cores when number of replicationsR
is a large value.
Value
Returns an object
of class ctmedmc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- fun
Function used ("PosteriorMed").
- output
A list the length of which is equal to the length of
delta_t
.
Each element in the output
list has the following elements:
- est
Mean of the posterior distribution of the total, direct, and indirect effects.
- thetahatstar
Posterior distribution of the total, direct, and indirect effects.
Details
See Total()
,
Direct()
, and
Indirect()
for more details.
References
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0
See also
Other Continuous Time Mediation Functions:
DeltaBeta()
,
DeltaIndirectCentral()
,
DeltaMed()
,
DeltaTotalCentral()
,
Direct()
,
Indirect()
,
IndirectCentral()
,
MCBeta()
,
MCIndirectCentral()
,
MCMed()
,
MCPhi()
,
MCTotalCentral()
,
Med()
,
PosteriorBeta()
,
PosteriorIndirectCentral()
,
PosteriorPhi()
,
PosteriorTotalCentral()
,
Total()
,
TotalCentral()
,
Trajectory()
Examples
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
data = c(
0.002704274, -0.001475275, 0.000949122,
-0.001619422, 0.000885122, -0.000569404,
0.00085493, -0.000465824, 0.000297815,
-0.001475275, 0.004428442, -0.002642303,
0.000980573, -0.00271817, 0.001618805,
-0.000586921, 0.001478421, -0.000871547,
0.000949122, -0.002642303, 0.006402668,
-0.000697798, 0.001813471, -0.004043138,
0.000463086, -0.001120949, 0.002271711,
-0.001619422, 0.000980573, -0.000697798,
0.002079286, -0.001152501, 0.000753,
-0.001528701, 0.000820587, -0.000517524,
0.000885122, -0.00271817, 0.001813471,
-0.001152501, 0.00342605, -0.002075005,
0.000899165, -0.002532849, 0.001475579,
-0.000569404, 0.001618805, -0.004043138,
0.000753, -0.002075005, 0.004984032,
-0.000622255, 0.001634917, -0.003705661,
0.00085493, -0.000586921, 0.000463086,
-0.001528701, 0.000899165, -0.000622255,
0.002060076, -0.001096684, 0.000686386,
-0.000465824, 0.001478421, -0.001120949,
0.000820587, -0.002532849, 0.001634917,
-0.001096684, 0.003328692, -0.001926088,
0.000297815, -0.000871547, 0.002271711,
-0.000517524, 0.001475579, -0.003705661,
0.000686386, -0.001926088, 0.004726235
),
nrow = 9
)
phi <- MCPhi(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
R = 1000L
)$output
# Specific time interval ----------------------------------------------------
PosteriorMed(
phi = phi,
delta_t = 1,
from = "x",
to = "y",
med = "m"
)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> total 1 -0.0987 0.0343 1000 -0.1701 -0.0300
#> direct 1 -0.2641 0.0446 1000 -0.3502 -0.1702
#> indirect 1 0.1653 0.0193 1000 0.1286 0.2053
#>
# Range of time intervals ---------------------------------------------------
posterior <- PosteriorMed(
phi = phi,
delta_t = 1:5,
from = "x",
to = "y",
med = "m"
)
# Methods -------------------------------------------------------------------
# PosteriorMed has a number of methods including
# print, summary, confint, and plot
print(posterior)
#>
#> Total, Direct, and Indirect Effects
#>
#> $`1`
#> interval est se R 2.5% 97.5%
#> total 1 -0.0987 0.0343 1000 -0.1701 -0.0300
#> direct 1 -0.2641 0.0446 1000 -0.3502 -0.1702
#> indirect 1 0.1653 0.0193 1000 0.1286 0.2053
#>
#> $`2`
#> interval est se R 2.5% 97.5%
#> total 2 0.0785 0.0393 1000 0.0000 0.1517
#> direct 2 -0.3180 0.0535 1000 -0.4308 -0.2088
#> indirect 2 0.3964 0.0390 1000 0.3195 0.4767
#>
#> $`3`
#> interval est se R 2.5% 97.5%
#> total 3 0.2477 0.0384 1000 0.1714 0.3179
#> direct 3 -0.2903 0.0517 1000 -0.4047 -0.1909
#> indirect 3 0.5380 0.0498 1000 0.4431 0.6380
#>
#> $`4`
#> interval est se R 2.5% 97.5%
#> total 4 0.3418 0.0360 1000 0.2754 0.4139
#> direct 4 -0.2381 0.0468 1000 -0.3407 -0.1511
#> indirect 4 0.5799 0.0557 1000 0.4771 0.6990
#>
#> $`5`
#> interval est se R 2.5% 97.5%
#> total 5 0.3672 0.0345 1000 0.3061 0.4371
#> direct 5 -0.1849 0.0412 1000 -0.2781 -0.1139
#> indirect 5 0.5522 0.0585 1000 0.4486 0.6830
#>
summary(posterior)
#> effect interval est se R 2.5% 97.5%
#> 1 total 1 -0.09874978 0.03427846 1000 -1.700557e-01 -0.03002761
#> 2 direct 1 -0.26407276 0.04455356 1000 -3.502412e-01 -0.17021325
#> 3 indirect 1 0.16532298 0.01933558 1000 1.286486e-01 0.20525832
#> 4 total 2 0.07845305 0.03927390 1000 2.223319e-05 0.15171207
#> 5 direct 2 -0.31798223 0.05351151 1000 -4.307985e-01 -0.20877122
#> 6 indirect 2 0.39643528 0.03904472 1000 3.195414e-01 0.47673554
#> 7 total 3 0.24765137 0.03839409 1000 1.714414e-01 0.31791498
#> 8 direct 3 -0.29031802 0.05167949 1000 -4.047201e-01 -0.19085616
#> 9 indirect 3 0.53796940 0.04982119 1000 4.430896e-01 0.63799533
#> 10 total 4 0.34181243 0.03596326 1000 2.754323e-01 0.41387188
#> 11 direct 4 -0.23809561 0.04681167 1000 -3.407235e-01 -0.15107266
#> 12 indirect 4 0.57990804 0.05574685 1000 4.771289e-01 0.69903936
#> 13 total 5 0.36723237 0.03449657 1000 3.061464e-01 0.43714997
#> 14 direct 5 -0.18492755 0.04120676 1000 -2.780756e-01 -0.11385791
#> 15 indirect 5 0.55215992 0.05846350 1000 4.485900e-01 0.68301642
confint(posterior, level = 0.95)
#> effect interval 2.5 % 97.5 %
#> 1 total 1 -1.700557e-01 -0.03002761
#> 2 direct 1 -3.502412e-01 -0.17021325
#> 3 indirect 1 1.286486e-01 0.20525832
#> 4 total 2 2.223319e-05 0.15171207
#> 5 direct 2 -4.307985e-01 -0.20877122
#> 6 indirect 2 3.195414e-01 0.47673554
#> 7 total 3 1.714414e-01 0.31791498
#> 8 direct 3 -4.047201e-01 -0.19085616
#> 9 indirect 3 4.430896e-01 0.63799533
#> 10 total 4 2.754323e-01 0.41387188
#> 11 direct 4 -3.407235e-01 -0.15107266
#> 12 indirect 4 4.771289e-01 0.69903936
#> 13 total 5 3.061464e-01 0.43714997
#> 14 direct 5 -2.780756e-01 -0.11385791
#> 15 indirect 5 4.485900e-01 0.68301642
plot(posterior)