Skip to contents

This function computes the total, direct, and indirect effects of the independent variable \(X\) on the dependent variable \(Y\) through mediator variables \(\mathbf{m}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model's drift matrix \(\boldsymbol{\Phi}\).

Usage

Med(phi, delta_t, from, to, med)

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

delta_t

Vector of positive numbers. Time interval (\(\Delta t\)).

from

Character string. Name of the independent variable \(X\) in phi.

to

Character string. Name of the dependent variable \(Y\) in phi.

med

Character vector. Name/s of the mediator variable/s in phi.

Value

Returns an object of class ctmedmed which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("Med").

output

A matrix of total, direct, and indirect effects.

Details

See Total(), Direct(), and Indirect() for more details.

Linear Stochastic Differential Equation Model

The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) $$ where \(\mathbf{y}_{i, t}\), \(\boldsymbol{\eta}_{i, t}\), and \(\boldsymbol{\varepsilon}_{i, t}\) are random variables and \(\boldsymbol{\nu}\), \(\boldsymbol{\Lambda}\), and \(\boldsymbol{\Theta}\) are model parameters. \(\mathbf{y}_{i, t}\) represents a vector of observed random variables, \(\boldsymbol{\eta}_{i, t}\) a vector of latent random variables, and \(\boldsymbol{\varepsilon}_{i, t}\) a vector of random measurement errors, at time \(t\) and individual \(i\). \(\boldsymbol{\nu}\) denotes a vector of intercepts, \(\boldsymbol{\Lambda}\) a matrix of factor loadings, and \(\boldsymbol{\Theta}\) the covariance matrix of \(\boldsymbol{\varepsilon}\).

An alternative representation of the measurement error is given by $$ \boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) $$ where \(\mathbf{z}_{i, t}\) is a vector of independent standard normal random variables and \( \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} . \)

The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \left( \boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i, t} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} $$ where \(\boldsymbol{\iota}\) is a term which is unobserved and constant over time, \(\boldsymbol{\Phi}\) is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, \(\boldsymbol{\Sigma}\) is the matrix of volatility or randomness in the process, and \(\mathrm{d}\boldsymbol{W}\) is a Wiener process or Brownian motion, which represents random fluctuations.

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0

Author

Ivan Jacob Agaloos Pesigan

Examples

phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")

# Specific time interval ----------------------------------------------------
Med(
  phi = phi,
  delta_t = 1,
  from = "x",
  to = "y",
  med = "m"
)
#> 
#> Total, Direct, and Indirect Effects
#> 
#>      interval total  direct indirect
#> [1,]        1  -0.1 -0.2675   0.1674

# Range of time intervals ---------------------------------------------------
med <- Med(
  phi = phi,
  delta_t = 1:30,
  from = "x",
  to = "y",
  med = "m"
)
plot(med)


# Methods -------------------------------------------------------------------
# Med has a number of methods including
# print, summary, and plot
med <- Med(
  phi = phi,
  delta_t = 1:5,
  from = "x",
  to = "y",
  med = "m"
)
print(med)
#> 
#> Total, Direct, and Indirect Effects
#> 
#>      interval   total  direct indirect
#> [1,]        1 -0.1000 -0.2675   0.1674
#> [2,]        2  0.0799 -0.3209   0.4008
#> [3,]        3  0.2508 -0.2914   0.5423
#> [4,]        4  0.3449 -0.2374   0.5823
#> [5,]        5  0.3693 -0.1828   0.5521
summary(med)
#>      interval   total  direct indirect
#> [1,]        1 -0.1000 -0.2675   0.1674
#> [2,]        2  0.0799 -0.3209   0.4008
#> [3,]        3  0.2508 -0.2914   0.5423
#> [4,]        4  0.3449 -0.2374   0.5823
#> [5,]        5  0.3693 -0.1828   0.5521
plot(med)