Skip to contents

This function generates a Monte Carlo method sampling distribution for the elements of the matrix of lagged coefficients \(\boldsymbol{\beta}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model drift matrix \(\boldsymbol{\Phi}\).

Usage

MCBeta(
  phi,
  vcov_phi_vec,
  delta_t,
  R,
  test_phi = TRUE,
  ncores = NULL,
  seed = NULL,
  tol = 0.01
)

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

vcov_phi_vec

Numeric matrix. The sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).

delta_t

Numeric. Time interval (\(\Delta t\)).

R

Positive integer. Number of replications.

test_phi

Logical. If test_phi = TRUE, the function tests the stability of the generated drift matrix \(\boldsymbol{\Phi}\). If the test returns FALSE, the function generates a new drift matrix \(\boldsymbol{\Phi}\) and runs the test recursively until the test returns TRUE.

ncores

Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.

seed

Random seed.

tol

Numeric. Smallest possible time interval to allow.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("MCBeta").

output

A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est

Estimated elements of the matrix of lagged coefficients.

thetahatstar

A matrix of Monte Carlo elements of the matrix of lagged coefficients.

Details

See Total().

Monte Carlo Method

Let \(\boldsymbol{\theta}\) be \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\), that is, the elements of the \(\boldsymbol{\Phi}\) matrix in vector form sorted column-wise. Let \(\hat{\boldsymbol{\theta}}\) be \(\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)\). Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters. $$ \hat{\boldsymbol{\theta}} \sim \mathcal{N} \left( \boldsymbol{\theta}, \mathbb{V} \left( \hat{\boldsymbol{\theta}} \right) \right) $$ Using this distributional assumption, a sampling distribution of \(\hat{\boldsymbol{\theta}}\) which we refer to as \(\hat{\boldsymbol{\theta}}^{\ast}\) can be generated by replacing the population parameters with sample estimates, that is, $$ \hat{\boldsymbol{\theta}}^{\ast} \sim \mathcal{N} \left( \hat{\boldsymbol{\theta}}, \hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right) \right) . $$ Let \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) be a parameter that is a function of the estimated parameters. A sampling distribution of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) , which we refer to as \(\mathbf{g} \left( \hat{\boldsymbol{\theta}}^{\ast} \right)\) , can be generated by using the simulated estimates to calculate \(\mathbf{g}\). The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to \(100 \left( 1 - \alpha \right) \%\) are the confidence intervals.

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Pesigan, I. J. A., Russell, M. A., & Chow, S.-M. (2025). Inferences and effect sizes for direct, indirect, and total effects in continuous-time mediation models. Psychological Methods. doi:10.1037/met0000779

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0

Author

Ivan Jacob Agaloos Pesigan

Examples

set.seed(42)
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
    0.00495, 0.00024, -0.00093,
    0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
    0.00024, 0.00214, 0.00012,
    -0.00061, 0.00012, 0.00156,
    0.00070, -0.00012, -0.00177,
    -0.00093, 0.00012, 0.00223
  ),
  nrow = 9
)

# Specific time interval ----------------------------------------------------
MCBeta(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1,
  R = 100L # use a large value for R in actual research
)
#> Call:
#> MCBeta(phi = phi, vcov_phi_vec = vcov_phi_vec, delta_t = 1, R = 100L)
#> 
#> Total, Direct, and Indirect Effects
#> 
#>        effect interval     est     se   R    2.5%   97.5%
#> 1 from x to x        1  0.6998 0.0395 100  0.6123  0.7653
#> 2 from x to m        1  0.5000 0.0342 100  0.4372  0.5625
#> 3 from x to y        1 -0.1000 0.0349 100 -0.1728 -0.0344
#> 4 from m to x        1  0.0000 0.0443 100 -0.0815  0.0965
#> 5 from m to m        1  0.5999 0.0341 100  0.5311  0.6641
#> 6 from m to y        1  0.3998 0.0318 100  0.3332  0.4560
#> 7 from y to x        1  0.0000 0.0441 100 -0.0972  0.0852
#> 8 from y to m        1  0.0000 0.0310 100 -0.0565  0.0632
#> 9 from y to y        1  0.5001 0.0309 100  0.4406  0.5652

# Range of time intervals ---------------------------------------------------
mc <- MCBeta(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1:5,
  R = 100L # use a large value for R in actual research
)
plot(mc)










# Methods -------------------------------------------------------------------
# MCBeta has a number of methods including
# print, summary, confint, and plot
print(mc)
#> Call:
#> MCBeta(phi = phi, vcov_phi_vec = vcov_phi_vec, delta_t = 1:5, 
#>     R = 100L)
#> 
#> Total, Direct, and Indirect Effects
#> 
#>         effect interval     est     se   R    2.5%   97.5%
#> 1  from x to x        1  0.6998 0.0479 100  0.6217  0.7987
#> 2  from x to m        1  0.5000 0.0372 100  0.4233  0.5623
#> 3  from x to y        1 -0.1000 0.0283 100 -0.1523 -0.0412
#> 4  from m to x        1  0.0000 0.0399 100 -0.0831  0.0687
#> 5  from m to m        1  0.5999 0.0333 100  0.5361  0.6602
#> 6  from m to y        1  0.3998 0.0258 100  0.3490  0.4411
#> 7  from y to x        1  0.0000 0.0371 100 -0.0752  0.0699
#> 8  from y to m        1  0.0000 0.0323 100 -0.0475  0.0713
#> 9  from y to y        1  0.5001 0.0241 100  0.4652  0.5530
#> 10 from x to x        2  0.4897 0.0574 100  0.4116  0.6226
#> 11 from x to m        2  0.6499 0.0578 100  0.5460  0.7631
#> 12 from x to y        2  0.0799 0.0318 100  0.0173  0.1382
#> 13 from m to x        2  0.0000 0.0489 100 -0.0975  0.0837
#> 14 from m to m        2  0.3599 0.0497 100  0.2771  0.4631
#> 15 from m to y        2  0.4398 0.0289 100  0.3813  0.4882
#> 16 from y to x        2  0.0000 0.0445 100 -0.0891  0.0853
#> 17 from y to m        2  0.0000 0.0493 100 -0.0908  0.0957
#> 18 from y to y        2  0.2501 0.0293 100  0.2080  0.3112
#> 19 from x to x        3  0.3427 0.0579 100  0.2710  0.4796
#> 20 from x to m        3  0.6347 0.0709 100  0.5261  0.7974
#> 21 from x to y        3  0.2508 0.0341 100  0.1789  0.3160
#> 22 from m to x        3  0.0000 0.0489 100 -0.0937  0.0783
#> 23 from m to m        3  0.2159 0.0601 100  0.1125  0.3444
#> 24 from m to y        3  0.3638 0.0295 100  0.3080  0.4138
#> 25 from y to x        3  0.0000 0.0407 100 -0.0792  0.0781
#> 26 from y to m        3  0.0000 0.0569 100 -0.1086  0.1075
#> 27 from y to y        3  0.1251 0.0302 100  0.0864  0.1967
#> 28 from x to x        4  0.2398 0.0572 100  0.1666  0.3709
#> 29 from x to m        4  0.5521 0.0782 100  0.4547  0.7447
#> 30 from x to y        4  0.3449 0.0396 100  0.2776  0.4253
#> 31 from m to x        4  0.0000 0.0455 100 -0.0866  0.0807
#> 32 from m to m        4  0.1295 0.0655 100  0.0130  0.2628
#> 33 from m to y        4  0.2683 0.0329 100  0.2090  0.3389
#> 34 from y to x        4  0.0000 0.0337 100 -0.0615  0.0661
#> 35 from y to m        4  0.0000 0.0572 100 -0.1087  0.1105
#> 36 from y to y        4  0.0625 0.0325 100  0.0135  0.1351
#> 37 from x to x        5  0.1678 0.0568 100  0.0867  0.3132
#> 38 from x to m        5  0.4511 0.0819 100  0.3539  0.6567
#> 39 from x to y        5  0.3693 0.0454 100  0.3097  0.4771
#> 40 from m to x        5  0.0000 0.0403 100 -0.0756  0.0787
#> 41 from m to m        5  0.0777 0.0662 100 -0.0330  0.2049
#> 42 from m to y        5  0.1859 0.0373 100  0.1250  0.2679
#> 43 from y to x        5  0.0000 0.0268 100 -0.0462  0.0560
#> 44 from y to m        5  0.0000 0.0528 100 -0.0974  0.1060
#> 45 from y to y        5  0.0313 0.0350 100 -0.0252  0.0971
summary(mc)
#> Call:
#> MCBeta(phi = phi, vcov_phi_vec = vcov_phi_vec, delta_t = 1:5, 
#>     R = 100L)
#> 
#> Total, Direct, and Indirect Effects
#> 
#>         effect interval     est     se   R    2.5%   97.5%
#> 1  from x to x        1  0.6998 0.0479 100  0.6217  0.7987
#> 2  from x to m        1  0.5000 0.0372 100  0.4233  0.5623
#> 3  from x to y        1 -0.1000 0.0283 100 -0.1523 -0.0412
#> 4  from m to x        1  0.0000 0.0399 100 -0.0831  0.0687
#> 5  from m to m        1  0.5999 0.0333 100  0.5361  0.6602
#> 6  from m to y        1  0.3998 0.0258 100  0.3490  0.4411
#> 7  from y to x        1  0.0000 0.0371 100 -0.0752  0.0699
#> 8  from y to m        1  0.0000 0.0323 100 -0.0475  0.0713
#> 9  from y to y        1  0.5001 0.0241 100  0.4652  0.5530
#> 10 from x to x        2  0.4897 0.0574 100  0.4116  0.6226
#> 11 from x to m        2  0.6499 0.0578 100  0.5460  0.7631
#> 12 from x to y        2  0.0799 0.0318 100  0.0173  0.1382
#> 13 from m to x        2  0.0000 0.0489 100 -0.0975  0.0837
#> 14 from m to m        2  0.3599 0.0497 100  0.2771  0.4631
#> 15 from m to y        2  0.4398 0.0289 100  0.3813  0.4882
#> 16 from y to x        2  0.0000 0.0445 100 -0.0891  0.0853
#> 17 from y to m        2  0.0000 0.0493 100 -0.0908  0.0957
#> 18 from y to y        2  0.2501 0.0293 100  0.2080  0.3112
#> 19 from x to x        3  0.3427 0.0579 100  0.2710  0.4796
#> 20 from x to m        3  0.6347 0.0709 100  0.5261  0.7974
#> 21 from x to y        3  0.2508 0.0341 100  0.1789  0.3160
#> 22 from m to x        3  0.0000 0.0489 100 -0.0937  0.0783
#> 23 from m to m        3  0.2159 0.0601 100  0.1125  0.3444
#> 24 from m to y        3  0.3638 0.0295 100  0.3080  0.4138
#> 25 from y to x        3  0.0000 0.0407 100 -0.0792  0.0781
#> 26 from y to m        3  0.0000 0.0569 100 -0.1086  0.1075
#> 27 from y to y        3  0.1251 0.0302 100  0.0864  0.1967
#> 28 from x to x        4  0.2398 0.0572 100  0.1666  0.3709
#> 29 from x to m        4  0.5521 0.0782 100  0.4547  0.7447
#> 30 from x to y        4  0.3449 0.0396 100  0.2776  0.4253
#> 31 from m to x        4  0.0000 0.0455 100 -0.0866  0.0807
#> 32 from m to m        4  0.1295 0.0655 100  0.0130  0.2628
#> 33 from m to y        4  0.2683 0.0329 100  0.2090  0.3389
#> 34 from y to x        4  0.0000 0.0337 100 -0.0615  0.0661
#> 35 from y to m        4  0.0000 0.0572 100 -0.1087  0.1105
#> 36 from y to y        4  0.0625 0.0325 100  0.0135  0.1351
#> 37 from x to x        5  0.1678 0.0568 100  0.0867  0.3132
#> 38 from x to m        5  0.4511 0.0819 100  0.3539  0.6567
#> 39 from x to y        5  0.3693 0.0454 100  0.3097  0.4771
#> 40 from m to x        5  0.0000 0.0403 100 -0.0756  0.0787
#> 41 from m to m        5  0.0777 0.0662 100 -0.0330  0.2049
#> 42 from m to y        5  0.1859 0.0373 100  0.1250  0.2679
#> 43 from y to x        5  0.0000 0.0268 100 -0.0462  0.0560
#> 44 from y to m        5  0.0000 0.0528 100 -0.0974  0.1060
#> 45 from y to y        5  0.0313 0.0350 100 -0.0252  0.0971
confint(mc, level = 0.95)
#>         effect interval       2.5 %      97.5 %
#> 1  from x to x        1  0.62172403  0.79874753
#> 2  from x to m        1  0.42325918  0.56229947
#> 3  from x to y        1 -0.15232781 -0.04123191
#> 4  from x to x        2  0.41161279  0.62262364
#> 5  from x to m        2  0.54595994  0.76312096
#> 6  from x to y        2  0.01734713  0.13816481
#> 7  from x to x        3  0.27099116  0.47958487
#> 8  from x to m        3  0.52606339  0.79739417
#> 9  from x to y        3  0.17891544  0.31595326
#> 10 from x to x        4  0.16662023  0.37091634
#> 11 from x to m        4  0.45470526  0.74465355
#> 12 from x to y        4  0.27762014  0.42528849
#> 13 from x to x        5  0.08673995  0.31323136
#> 14 from x to m        5  0.35387853  0.65674061
#> 15 from x to y        5  0.30966378  0.47707320
plot(mc)