Skip to contents

This function generates a Monte Carlo method sampling distribution for the elements of the matrix of lagged coefficients \(\boldsymbol{\beta}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model drift matrix \(\boldsymbol{\Phi}\).

Usage

MCBeta(
  phi,
  vcov_phi_vec,
  delta_t,
  R,
  test_phi = TRUE,
  ncores = NULL,
  seed = NULL
)

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

vcov_phi_vec

Numeric matrix. The sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).

delta_t

Numeric. Time interval (\(\Delta t\)).

R

Positive integer. Number of replications.

test_phi

Logical. If test_phi = TRUE, the function tests the stability of the generated drift matrix \(\boldsymbol{\Phi}\). If the test returns FALSE, the function generates a new drift matrix \(\boldsymbol{\Phi}\) and runs the test recursively until the test returns TRUE.

ncores

Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.

seed

Random seed.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("MCBeta").

output

A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est

A vector of total, direct, and indirect effects.

thetahatstar

A matrix of Monte Carlo total, direct, and indirect effects.

Details

See Total().

Monte Carlo Method

Let \(\boldsymbol{\theta}\) be \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\), that is, the elements of the \(\boldsymbol{\Phi}\) matrix in vector form sorted column-wise. Let \(\hat{\boldsymbol{\theta}}\) be \(\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)\). Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters. $$ \hat{\boldsymbol{\theta}} \sim \mathcal{N} \left( \boldsymbol{\theta}, \mathbb{V} \left( \hat{\boldsymbol{\theta}} \right) \right) $$ Using this distributional assumption, a sampling distribution of \(\hat{\boldsymbol{\theta}}\) which we refer to as \(\hat{\boldsymbol{\theta}}^{\ast}\) can be generated by replacing the population parameters with sample estimates, that is, $$ \hat{\boldsymbol{\theta}}^{\ast} \sim \mathcal{N} \left( \hat{\boldsymbol{\theta}}, \hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right) \right) . $$ Let \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) be a parameter that is a function of the estimated parameters. A sampling distribution of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) , which we refer to as \(\mathbf{g} \left( \hat{\boldsymbol{\theta}}^{\ast} \right)\) , can be generated by using the simulated estimates to calculate \(\mathbf{g}\). The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to \(100 \left( 1 - \alpha \right) \%\) are the confidence intervals.

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0

Author

Ivan Jacob Agaloos Pesigan

Examples

set.seed(42)
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
  data = c(
    0.002704274, -0.001475275, 0.000949122,
    -0.001619422, 0.000885122, -0.000569404,
    0.00085493, -0.000465824, 0.000297815,
    -0.001475275, 0.004428442, -0.002642303,
    0.000980573, -0.00271817, 0.001618805,
    -0.000586921, 0.001478421, -0.000871547,
    0.000949122, -0.002642303, 0.006402668,
    -0.000697798, 0.001813471, -0.004043138,
    0.000463086, -0.001120949, 0.002271711,
    -0.001619422, 0.000980573, -0.000697798,
    0.002079286, -0.001152501, 0.000753,
    -0.001528701, 0.000820587, -0.000517524,
    0.000885122, -0.00271817, 0.001813471,
    -0.001152501, 0.00342605, -0.002075005,
    0.000899165, -0.002532849, 0.001475579,
    -0.000569404, 0.001618805, -0.004043138,
    0.000753, -0.002075005, 0.004984032,
    -0.000622255, 0.001634917, -0.003705661,
    0.00085493, -0.000586921, 0.000463086,
    -0.001528701, 0.000899165, -0.000622255,
    0.002060076, -0.001096684, 0.000686386,
    -0.000465824, 0.001478421, -0.001120949,
    0.000820587, -0.002532849, 0.001634917,
    -0.001096684, 0.003328692, -0.001926088,
    0.000297815, -0.000871547, 0.002271711,
    -0.000517524, 0.001475579, -0.003705661,
    0.000686386, -0.001926088, 0.004726235
  ),
  nrow = 9
)

# Specific time interval ----------------------------------------------------
MCBeta(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1,
  R = 100L # use a large value for R in actual research
)
#> 
#> Total, Direct, and Indirect Effects
#> 
#> $`1`
#>             interval     est     se   R    2.5%   97.5%
#> from x to x        1  0.6998 0.0243 100  0.6454  0.7396
#> from x to m        1  0.5000 0.0326 100  0.4429  0.5685
#> from x to y        1 -0.1000 0.0342 100 -0.1666 -0.0440
#> from m to x        1  0.0000 0.0238 100 -0.0432  0.0497
#> from m to m        1  0.5999 0.0249 100  0.5503  0.6438
#> from m to y        1  0.3998 0.0287 100  0.3381  0.4388
#> from y to x        1  0.0000 0.0282 100 -0.0597  0.0540
#> from y to m        1  0.0000 0.0264 100 -0.0448  0.0560
#> from y to y        1  0.5001 0.0343 100  0.4404  0.5758
#> 

# Range of time intervals ---------------------------------------------------
mc <- MCBeta(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1:5,
  R = 100L # use a large value for R in actual research
)
plot(mc)










# Methods -------------------------------------------------------------------
# MCBeta has a number of methods including
# print, summary, confint, and plot
print(mc)
#> 
#> Total, Direct, and Indirect Effects
#> 
#> $`1`
#>             interval     est     se   R    2.5%   97.5%
#> from x to x        1  0.6998 0.0298 100  0.6519  0.7631
#> from x to m        1  0.5000 0.0296 100  0.4424  0.5529
#> from x to y        1 -0.1000 0.0340 100 -0.1648 -0.0320
#> from m to x        1  0.0000 0.0212 100 -0.0445  0.0355
#> from m to m        1  0.5999 0.0259 100  0.5520  0.6485
#> from m to y        1  0.3998 0.0269 100  0.3375  0.4385
#> from y to x        1  0.0000 0.0232 100 -0.0423  0.0434
#> from y to m        1  0.0000 0.0290 100 -0.0523  0.0603
#> from y to y        1  0.5001 0.0279 100  0.4601  0.5604
#> 
#> $`2`
#>             interval    est     se   R    2.5%  97.5%
#> from x to x        2 0.4897 0.0391 100  0.4339 0.5782
#> from x to m        2 0.6499 0.0385 100  0.5643 0.7187
#> from x to y        2 0.0799 0.0352 100  0.0110 0.1542
#> from m to x        2 0.0000 0.0252 100 -0.0505 0.0421
#> from m to m        2 0.3599 0.0292 100  0.3052 0.4144
#> from m to y        2 0.4398 0.0238 100  0.3923 0.4778
#> from y to x        2 0.0000 0.0278 100 -0.0526 0.0527
#> from y to m        2 0.0000 0.0343 100 -0.0578 0.0724
#> from y to y        2 0.2501 0.0287 100  0.2131 0.3086
#> 
#> $`3`
#>             interval    est     se   R    2.5%  97.5%
#> from x to x        3 0.3427 0.0405 100  0.2886 0.4369
#> from x to m        3 0.6347 0.0445 100  0.5488 0.7374
#> from x to y        3 0.2508 0.0337 100  0.1884 0.3100
#> from m to x        3 0.0000 0.0253 100 -0.0502 0.0449
#> from m to m        3 0.2159 0.0310 100  0.1587 0.2809
#> from m to y        3 0.3638 0.0213 100  0.3269 0.4010
#> from y to x        3 0.0000 0.0253 100 -0.0474 0.0477
#> from y to m        3 0.0000 0.0344 100 -0.0597 0.0687
#> from y to y        3 0.1251 0.0255 100  0.0928 0.1836
#> 
#> $`4`
#>             interval    est     se   R    2.5%  97.5%
#> from x to x        4 0.2398 0.0383 100  0.1923 0.3245
#> from x to m        4 0.5521 0.0480 100  0.4786 0.6840
#> from x to y        4 0.3449 0.0324 100  0.2823 0.3989
#> from m to x        4 0.0000 0.0241 100 -0.0472 0.0459
#> from m to m        4 0.1295 0.0325 100  0.0824 0.2003
#> from m to y        4 0.2683 0.0213 100  0.2247 0.3098
#> from y to x        4 0.0000 0.0207 100 -0.0396 0.0383
#> from y to m        4 0.0000 0.0327 100 -0.0577 0.0580
#> from y to y        4 0.0625 0.0230 100  0.0306 0.1126
#> 
#> $`5`
#>             interval    est     se   R    2.5%  97.5%
#> from x to x        5 0.1678 0.0351 100  0.1186 0.2492
#> from x to m        5 0.4511 0.0490 100  0.3896 0.5892
#> from x to y        5 0.3693 0.0325 100  0.3091 0.4402
#> from m to x        5 0.0000 0.0219 100 -0.0435 0.0409
#> from m to m        5 0.0777 0.0327 100  0.0331 0.1456
#> from m to y        5 0.1859 0.0218 100  0.1439 0.2318
#> from y to x        5 0.0000 0.0161 100 -0.0319 0.0292
#> from y to m        5 0.0000 0.0296 100 -0.0545 0.0522
#> from y to y        5 0.0313 0.0217 100 -0.0007 0.0789
#> 
summary(mc)
#>         effect interval         est         se   R          2.5%       97.5%
#> 1  from x to x        1  0.69977250 0.02980826 100  0.6519089361  0.76308341
#> 2  from x to m        1  0.50003412 0.02955790 100  0.4424164796  0.55293851
#> 3  from x to y        1 -0.10003837 0.03395899 100 -0.1647602454 -0.03201140
#> 4  from m to x        1  0.00000000 0.02116540 100 -0.0445105255  0.03554314
#> 5  from m to m        1  0.59989538 0.02590145 100  0.5519528919  0.64852598
#> 6  from m to y        1  0.39983562 0.02687401 100  0.3375341851  0.43852590
#> 7  from y to x        1  0.00000000 0.02321007 100 -0.0423011851  0.04340206
#> 8  from y to m        1  0.00000000 0.02898845 100 -0.0522890151  0.06027192
#> 9  from y to y        1  0.50007360 0.02791353 100  0.4601312759  0.56043960
#> 10 from x to x        2  0.48968155 0.03909233 100  0.4339277880  0.57819460
#> 11 from x to m        2  0.64987829 0.03852373 100  0.5643192200  0.71868543
#> 12 from x to y        2  0.07990080 0.03520320 100  0.0109855302  0.15418817
#> 13 from m to x        2  0.00000000 0.02517642 100 -0.0505302788  0.04207739
#> 14 from m to m        2  0.35987447 0.02916848 100  0.3052168085  0.41440661
#> 15 from m to y        2  0.43980678 0.02376322 100  0.3922748242  0.47778214
#> 16 from y to x        2  0.00000000 0.02779738 100 -0.0525523091  0.05271509
#> 17 from y to m        2  0.00000000 0.03434984 100 -0.0578289424  0.07244160
#> 18 from y to y        2  0.25007360 0.02865081 100  0.2130910857  0.30860499
#> 19 from x to x        3  0.34266568 0.04046888 100  0.2885803756  0.43690017
#> 20 from x to m        3  0.63471647 0.04452277 100  0.5488364319  0.73736494
#> 21 from x to y        3  0.25081383 0.03368900 100  0.1884127019  0.30996604
#> 22 from m to x        3  0.00000000 0.02532159 100 -0.0502065919  0.04493872
#> 23 from m to m        3  0.21588703 0.03100542 100  0.1587437678  0.28092696
#> 24 from m to y        3  0.36382639 0.02128633 100  0.3269109590  0.40099688
#> 25 from y to x        3  0.00000000 0.02530164 100 -0.0474396030  0.04765315
#> 26 from y to m        3  0.00000000 0.03443535 100 -0.0596835927  0.06873263
#> 27 from y to y        3  0.12505520 0.02550570 100  0.0928153083  0.18357438
#> 28 from x to x        4  0.23978802 0.03830707 100  0.1923279310  0.32454807
#> 29 from x to m        4  0.55210801 0.04802959 100  0.4785767147  0.68396195
#> 30 from x to y        4  0.34492791 0.03244313 100  0.2823113255  0.39892318
#> 31 from m to x        4  0.00000000 0.02411064 100 -0.0472476804  0.04586710
#> 32 from m to m        4  0.12950963 0.03249516 100  0.0824132762  0.20031758
#> 33 from m to y        4  0.26825930 0.02131083 100  0.2246893999  0.30976851
#> 34 from y to x        4  0.00000000 0.02073839 100 -0.0396294143  0.03832011
#> 35 from y to m        4  0.00000000 0.03269581 100 -0.0577104870  0.05801271
#> 36 from y to y        4  0.06253681 0.02303081 100  0.0305756803  0.11255550
#> 37 from x to x        5  0.16779706 0.03507880 100  0.1185697450  0.24921620
#> 38 from x to m        5  0.45110924 0.04904705 100  0.3895881356  0.58917524
#> 39 from x to y        5  0.36925379 0.03254938 100  0.3090792018  0.44018601
#> 40 from m to x        5  0.00000000 0.02187122 100 -0.0435016847  0.04092365
#> 41 from m to m        5  0.07769223 0.03269351 100  0.0331218619  0.14559614
#> 42 from m to y        5  0.18593196 0.02180899 100  0.1439155809  0.23177020
#> 43 from y to x        5  0.00000000 0.01614603 100 -0.0318640119  0.02916216
#> 44 from y to m        5  0.00000000 0.02960860 100 -0.0544915034  0.05219216
#> 45 from y to y        5  0.03127301 0.02165316 100 -0.0007099821  0.07892221
confint(mc, level = 0.95)
#>         effect interval       2.5 %     97.5 %
#> 1  from x to x        1  0.65190894  0.7630834
#> 2  from x to m        1  0.44241648  0.5529385
#> 3  from x to y        1 -0.16476025 -0.0320114
#> 4  from x to x        2  0.43392779  0.5781946
#> 5  from x to m        2  0.56431922  0.7186854
#> 6  from x to y        2  0.01098553  0.1541882
#> 7  from x to x        3  0.28858038  0.4369002
#> 8  from x to m        3  0.54883643  0.7373649
#> 9  from x to y        3  0.18841270  0.3099660
#> 10 from x to x        4  0.19232793  0.3245481
#> 11 from x to m        4  0.47857671  0.6839619
#> 12 from x to y        4  0.28231133  0.3989232
#> 13 from x to x        5  0.11856975  0.2492162
#> 14 from x to m        5  0.38958814  0.5891752
#> 15 from x to y        5  0.30907920  0.4401860
plot(mc)