Skip to contents

This function computes the delta method sampling variance-covariance matrix for the indirect effect centrality over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model's drift matrix \(\boldsymbol{\Phi}\).

Usage

DeltaIndirectCentral(phi, vcov_phi_vec, delta_t, ncores = NULL, tol = 0.01)

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

vcov_phi_vec

Numeric matrix. The sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).

delta_t

Vector of positive numbers. Time interval (\(\Delta t\)).

ncores

Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when the length of delta_t is long.

tol

Numeric. Smallest possible time interval to allow.

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("DeltaIndirectCentral").

output

A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t

Time interval.

jacobian

Jacobian matrix.

est

Estimated indirect effect centrality.

vcov

Sampling variance-covariance matrix of estimated indirect effect centrality.

Details

See IndirectCentral() more details.

Delta Method

Let \(\boldsymbol{\theta}\) be \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\), that is, the elements of the \(\boldsymbol{\Phi}\) matrix in vector form sorted column-wise. Let \(\hat{\boldsymbol{\theta}}\) be \(\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)\). By the multivariate central limit theory, the function \(\mathbf{g}\) using \(\hat{\boldsymbol{\theta}}\) as input can be expressed as:

$$ \sqrt{n} \left( \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) - \mathbf{g} \left( \boldsymbol{\theta} \right) \right) \xrightarrow[]{ \mathrm{D} } \mathcal{N} \left( 0, \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime} \right) $$

where \(\mathbf{J}\) is the matrix of first-order derivatives of the function \(\mathbf{g}\) with respect to the elements of \(\boldsymbol{\theta}\) and \(\boldsymbol{\Gamma}\) is the asymptotic variance-covariance matrix of \(\hat{\boldsymbol{\theta}}\).

From the former, we can derive the distribution of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) as follows:

$$ \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) \approx \mathcal{N} \left( \mathbf{g} \left( \boldsymbol{\theta} \right) , n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime} \right) $$

The uncertainty associated with the estimator \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) is, therefore, given by \(n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime}\) . When \(\boldsymbol{\Gamma}\) is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of \(\hat{\boldsymbol{\theta}}\), that is, \(\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)\) for \(n^{-1} \boldsymbol{\Gamma}\). Therefore, the sampling variance-covariance matrix of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) is given by

$$ \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) \approx \mathcal{N} \left( \mathbf{g} \left( \boldsymbol{\theta} \right) , \mathbf{J} \hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right) \mathbf{J}^{\prime} \right) . $$

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Pesigan, I. J. A., Russell, M. A., & Chow, S.-M. (2025). Inferences and effect sizes for direct, indirect, and total effects in continuous-time mediation models. Psychological Methods. doi:10.1037/met0000779

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0

Author

Ivan Jacob Agaloos Pesigan

Examples

phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
  data = c(
    0.002704274, -0.001475275, 0.000949122,
    -0.001619422, 0.000885122, -0.000569404,
    0.00085493, -0.000465824, 0.000297815,
    -0.001475275, 0.004428442, -0.002642303,
    0.000980573, -0.00271817, 0.001618805,
    -0.000586921, 0.001478421, -0.000871547,
    0.000949122, -0.002642303, 0.006402668,
    -0.000697798, 0.001813471, -0.004043138,
    0.000463086, -0.001120949, 0.002271711,
    -0.001619422, 0.000980573, -0.000697798,
    0.002079286, -0.001152501, 0.000753,
    -0.001528701, 0.000820587, -0.000517524,
    0.000885122, -0.00271817, 0.001813471,
    -0.001152501, 0.00342605, -0.002075005,
    0.000899165, -0.002532849, 0.001475579,
    -0.000569404, 0.001618805, -0.004043138,
    0.000753, -0.002075005, 0.004984032,
    -0.000622255, 0.001634917, -0.003705661,
    0.00085493, -0.000586921, 0.000463086,
    -0.001528701, 0.000899165, -0.000622255,
    0.002060076, -0.001096684, 0.000686386,
    -0.000465824, 0.001478421, -0.001120949,
    0.000820587, -0.002532849, 0.001634917,
    -0.001096684, 0.003328692, -0.001926088,
    0.000297815, -0.000871547, 0.002271711,
    -0.000517524, 0.001475579, -0.003705661,
    0.000686386, -0.001926088, 0.004726235
  ),
  nrow = 9
)

# Specific time interval ----------------------------------------------------
DeltaIndirectCentral(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1
)
#> Call:
#> DeltaIndirectCentral(phi = phi, vcov_phi_vec = vcov_phi_vec, 
#>     delta_t = 1)
#> 
#> Indirect Effect Centrality
#> 
#>   variable interval    est     se      z p    2.5%  97.5%
#> 1        x        1 0.0000 0.0123 0.0000 1 -0.0242 0.0242
#> 2        m        1 0.1674 0.0194 8.6167 0  0.1293 0.2055
#> 3        y        1 0.0000 0.0114 0.0000 1 -0.0223 0.0223

# Range of time intervals ---------------------------------------------------
delta <- DeltaIndirectCentral(
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1:5
)
plot(delta)




# Methods -------------------------------------------------------------------
# DeltaIndirectCentral has a number of methods including
# print, summary, confint, and plot
print(delta)
#> Call:
#> DeltaIndirectCentral(phi = phi, vcov_phi_vec = vcov_phi_vec, 
#>     delta_t = 1:5)
#> 
#> Indirect Effect Centrality
#> 
#>    variable interval    est     se       z p    2.5%  97.5%
#> 1         x        1 0.0000 0.0123  0.0000 1 -0.0242 0.0242
#> 2         m        1 0.1674 0.0194  8.6167 0  0.1293 0.2055
#> 3         y        1 0.0000 0.0114  0.0000 1 -0.0223 0.0223
#> 4         x        2 0.0000 0.0245  0.0000 1 -0.0479 0.0479
#> 5         m        2 0.4008 0.0389 10.3027 0  0.3246 0.4771
#> 6         y        2 0.0000 0.0219  0.0000 1 -0.0430 0.0430
#> 7         x        3 0.0000 0.0298  0.0000 1 -0.0585 0.0585
#> 8         m        3 0.5423 0.0493 11.0007 0  0.4456 0.6389
#> 9         y        3 0.0000 0.0284  0.0000 1 -0.0557 0.0557
#> 10        x        4 0.0000 0.0323  0.0000 1 -0.0634 0.0634
#> 11        m        4 0.5823 0.0548 10.6249 0  0.4749 0.6897
#> 12        y        4 0.0000 0.0359  0.0000 1 -0.0704 0.0704
#> 13        x        5 0.0000 0.0339  0.0000 1 -0.0664 0.0664
#> 14        m        5 0.5521 0.0571  9.6771 0  0.4403 0.6639
#> 15        y        5 0.0000 0.0440  0.0000 1 -0.0862 0.0862
summary(delta)
#> Call:
#> DeltaIndirectCentral(phi = phi, vcov_phi_vec = vcov_phi_vec, 
#>     delta_t = 1:5)
#> 
#> Indirect Effect Centrality
#> 
#>    variable interval    est     se       z p    2.5%  97.5%
#> 1         x        1 0.0000 0.0123  0.0000 1 -0.0242 0.0242
#> 2         m        1 0.1674 0.0194  8.6167 0  0.1293 0.2055
#> 3         y        1 0.0000 0.0114  0.0000 1 -0.0223 0.0223
#> 4         x        2 0.0000 0.0245  0.0000 1 -0.0479 0.0479
#> 5         m        2 0.4008 0.0389 10.3027 0  0.3246 0.4771
#> 6         y        2 0.0000 0.0219  0.0000 1 -0.0430 0.0430
#> 7         x        3 0.0000 0.0298  0.0000 1 -0.0585 0.0585
#> 8         m        3 0.5423 0.0493 11.0007 0  0.4456 0.6389
#> 9         y        3 0.0000 0.0284  0.0000 1 -0.0557 0.0557
#> 10        x        4 0.0000 0.0323  0.0000 1 -0.0634 0.0634
#> 11        m        4 0.5823 0.0548 10.6249 0  0.4749 0.6897
#> 12        y        4 0.0000 0.0359  0.0000 1 -0.0704 0.0704
#> 13        x        5 0.0000 0.0339  0.0000 1 -0.0664 0.0664
#> 14        m        5 0.5521 0.0571  9.6771 0  0.4403 0.6639
#> 15        y        5 0.0000 0.0440  0.0000 1 -0.0862 0.0862
confint(delta, level = 0.95)
#>    variable interval       2.5 %     97.5 %
#> 1         x        1 -0.02415288 0.02415288
#> 2         m        1  0.12933502 0.20549601
#> 3         y        1 -0.02230998 0.02230998
#> 4         x        2 -0.04792202 0.04792202
#> 5         m        2  0.32455600 0.47705260
#> 6         y        2 -0.04301280 0.04301280
#> 7         x        3 -0.05848447 0.05848447
#> 8         m        3  0.44564411 0.63886875
#> 9         y        3 -0.05571230 0.05571230
#> 10        x        4 -0.06335985 0.06335985
#> 11        m        4  0.47489827 0.68973759
#> 12        y        4 -0.07039028 0.07039028
#> 13        x        5 -0.06640976 0.06640976
#> 14        m        5  0.44027850 0.66391851
#> 15        y        5 -0.08623631 0.08623631
plot(delta)