Skip to contents

This function computes the delta method sampling variance-covariance matrix for the elements of the standardized matrix of lagged coefficients \(\boldsymbol{\beta}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model's drift matrix \(\boldsymbol{\Phi}\) and process noise covariance matrix \(\boldsymbol{\Sigma}\).

Usage

DeltaBetaStd(phi, sigma, vcov_theta, delta_t, ncores = NULL, tol = 0.01)

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

sigma

Numeric matrix. The process noise covariance matrix (\(\boldsymbol{\Sigma}\)).

vcov_theta

Numeric matrix. The sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\) and \(\mathrm{vech} \left( \boldsymbol{\Sigma} \right)\)

delta_t

Numeric. Time interval (\(\Delta t\)).

ncores

Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.

tol

Numeric. Smallest possible time interval to allow.

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("DeltaBetaStd").

output

A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t

Time interval.

jacobian

Jacobian matrix.

est

Estimated elements of the standardized matrix of lagged coefficients.

vcov

Sampling variance-covariance matrix of estimated elements of the standardized matrix of lagged coefficients.

Details

See TotalStd().

Delta Method

Let \(\boldsymbol{\theta}\) be a vector that combines \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\), that is, the elements of the \(\boldsymbol{\Phi}\) matrix in vector form sorted column-wise and \(\mathrm{vech} \left( \boldsymbol{\Sigma} \right)\), that is, the unique elements of the \(\boldsymbol{\Sigma}\) matrix in vector form sorted column-wise. Let \(\hat{\boldsymbol{\theta}}\) be a vector that combines \(\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)\) and \(\mathrm{vech} \left( \hat{\boldsymbol{\Sigma}} \right)\). By the multivariate central limit theory, the function \(\mathbf{g}\) using \(\hat{\boldsymbol{\theta}}\) as input can be expressed as:

$$ \sqrt{n} \left( \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) - \mathbf{g} \left( \boldsymbol{\theta} \right) \right) \xrightarrow[]{ \mathrm{D} } \mathcal{N} \left( 0, \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime} \right) $$

where \(\mathbf{J}\) is the matrix of first-order derivatives of the function \(\mathbf{g}\) with respect to the elements of \(\boldsymbol{\theta}\) and \(\boldsymbol{\Gamma}\) is the asymptotic variance-covariance matrix of \(\hat{\boldsymbol{\theta}}\).

From the former, we can derive the distribution of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) as follows:

$$ \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) \approx \mathcal{N} \left( \mathbf{g} \left( \boldsymbol{\theta} \right) , n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime} \right) $$

The uncertainty associated with the estimator \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) is, therefore, given by \(n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime}\) . When \(\boldsymbol{\Gamma}\) is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of \(\hat{\boldsymbol{\theta}}\), that is, \(\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)\) for \(n^{-1} \boldsymbol{\Gamma}\). Therefore, the sampling variance-covariance matrix of \(\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)\) is given by

$$ \mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) \approx \mathcal{N} \left( \mathbf{g} \left( \boldsymbol{\theta} \right) , \mathbf{J} \hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right) \mathbf{J}^{\prime} \right) . $$

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336-021-09767-0

Author

Ivan Jacob Agaloos Pesigan

Examples

phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma <- matrix(
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
  ),
  nrow = 3
)
vcov_theta <- matrix(
  data = c(
    0.00843, 0.00040, -0.00151, -0.00600, -0.00033,
    0.00110, 0.00324, 0.00020, -0.00061, -0.00115,
    0.00011, 0.00015, 0.00001, -0.00002, -0.00001,
    0.00040, 0.00374, 0.00016, -0.00022, -0.00273,
    -0.00016, 0.00009, 0.00150, 0.00012, -0.00010,
    -0.00026, 0.00002, 0.00012, 0.00004, -0.00001,
    -0.00151, 0.00016, 0.00389, 0.00103, -0.00007,
    -0.00283, -0.00050, 0.00000, 0.00156, 0.00021,
    -0.00005, -0.00031, 0.00001, 0.00007, 0.00006,
    -0.00600, -0.00022, 0.00103, 0.00644, 0.00031,
    -0.00119, -0.00374, -0.00021, 0.00070, 0.00064,
    -0.00015, -0.00005, 0.00000, 0.00003, -0.00001,
    -0.00033, -0.00273, -0.00007, 0.00031, 0.00287,
    0.00013, -0.00014, -0.00170, -0.00012, 0.00006,
    0.00014, -0.00001, -0.00015, 0.00000, 0.00001,
    0.00110, -0.00016, -0.00283, -0.00119, 0.00013,
    0.00297, 0.00063, -0.00004, -0.00177, -0.00013,
    0.00005, 0.00017, -0.00002, -0.00008, 0.00001,
    0.00324, 0.00009, -0.00050, -0.00374, -0.00014,
    0.00063, 0.00495, 0.00024, -0.00093, -0.00020,
    0.00006, -0.00010, 0.00000, -0.00001, 0.00004,
    0.00020, 0.00150, 0.00000, -0.00021, -0.00170,
    -0.00004, 0.00024, 0.00214, 0.00012, -0.00002,
    -0.00004, 0.00000, 0.00006, -0.00005, -0.00001,
    -0.00061, 0.00012, 0.00156, 0.00070, -0.00012,
    -0.00177, -0.00093, 0.00012, 0.00223, 0.00004,
    -0.00002, -0.00003, 0.00001, 0.00003, -0.00013,
    -0.00115, -0.00010, 0.00021, 0.00064, 0.00006,
    -0.00013, -0.00020, -0.00002, 0.00004, 0.00057,
    0.00001, -0.00009, 0.00000, 0.00000, 0.00001,
    0.00011, -0.00026, -0.00005, -0.00015, 0.00014,
    0.00005, 0.00006, -0.00004, -0.00002, 0.00001,
    0.00012, 0.00001, 0.00000, -0.00002, 0.00000,
    0.00015, 0.00002, -0.00031, -0.00005, -0.00001,
    0.00017, -0.00010, 0.00000, -0.00003, -0.00009,
    0.00001, 0.00014, 0.00000, 0.00000, -0.00005,
    0.00001, 0.00012, 0.00001, 0.00000, -0.00015,
    -0.00002, 0.00000, 0.00006, 0.00001, 0.00000,
    0.00000, 0.00000, 0.00010, 0.00001, 0.00000,
    -0.00002, 0.00004, 0.00007, 0.00003, 0.00000,
    -0.00008, -0.00001, -0.00005, 0.00003, 0.00000,
    -0.00002, 0.00000, 0.00001, 0.00005, 0.00001,
    -0.00001, -0.00001, 0.00006, -0.00001, 0.00001,
    0.00001, 0.00004, -0.00001, -0.00013, 0.00001,
    0.00000, -0.00005, 0.00000, 0.00001, 0.00012
  ),
  nrow = 15
)

# Specific time interval ----------------------------------------------------
DeltaBetaStd(
  phi = phi,
  sigma = sigma,
  vcov_theta = vcov_theta,
  delta_t = 1
)
#> 
#> Elements of the matrix of lagged coefficients
#> 
#> $`1`
#>             interval     est     se       z     p    2.5%   97.5%
#> from x to x        1  0.6998 0.0471 14.8688 0.000  0.6075  0.7920
#> from x to m        1  0.6431 0.0626 10.2685 0.000  0.5203  0.7658
#> from x to y        1 -0.0936 0.0284 -3.2966 0.001 -0.1493 -0.0380
#> from m to x        1  0.0000 0.0338  0.0000 1.000 -0.0662  0.0662
#> from m to m        1  0.5999 0.0326 18.3826 0.000  0.5359  0.6639
#> from m to y        1  0.2910 0.0313  9.2991 0.000  0.2296  0.3523
#> from y to x        1  0.0000 0.0447  0.0000 1.000 -0.0876  0.0876
#> from y to m        1  0.0000 0.0427  0.0000 1.000 -0.0837  0.0837
#> from y to y        1  0.5001 0.0274 18.2776 0.000  0.4464  0.5537
#> 

# Range of time intervals ---------------------------------------------------
delta <- DeltaBetaStd(
  phi = phi,
  sigma = sigma,
  vcov_theta = vcov_theta,
  delta_t = 1:5
)
plot(delta)










# Methods -------------------------------------------------------------------
# DeltaBetaStd has a number of methods including
# print, summary, confint, and plot
print(delta)
#> 
#> Elements of the matrix of lagged coefficients
#> 
#> $`1`
#>             interval     est     se       z     p    2.5%   97.5%
#> from x to x        1  0.6998 0.0471 14.8688 0.000  0.6075  0.7920
#> from x to m        1  0.6431 0.0626 10.2685 0.000  0.5203  0.7658
#> from x to y        1 -0.0936 0.0284 -3.2966 0.001 -0.1493 -0.0380
#> from m to x        1  0.0000 0.0338  0.0000 1.000 -0.0662  0.0662
#> from m to m        1  0.5999 0.0326 18.3826 0.000  0.5359  0.6639
#> from m to y        1  0.2910 0.0313  9.2991 0.000  0.2296  0.3523
#> from y to x        1  0.0000 0.0447  0.0000 1.000 -0.0876  0.0876
#> from y to m        1  0.0000 0.0427  0.0000 1.000 -0.0837  0.0837
#> from y to y        1  0.5001 0.0274 18.2776 0.000  0.4464  0.5537
#> 
#> $`2`
#>             interval    est     se      z      p    2.5%  97.5%
#> from x to x        2 0.4897 0.0548 8.9377 0.0000  0.3823 0.5971
#> from x to m        2 0.8358 0.0940 8.8916 0.0000  0.6515 1.0200
#> from x to y        2 0.0748 0.0341 2.1936 0.0283  0.0080 0.1416
#> from m to x        2 0.0000 0.0399 0.0000 1.0000 -0.0782 0.0782
#> from m to m        2 0.3599 0.0504 7.1405 0.0000  0.2611 0.4587
#> from m to y        2 0.3201 0.0365 8.7639 0.0000  0.2485 0.3916
#> from y to x        2 0.0000 0.0536 0.0000 1.0000 -0.1051 0.1051
#> from y to m        2 0.0000 0.0678 0.0000 1.0000 -0.1329 0.1329
#> from y to y        2 0.2501 0.0318 7.8668 0.0000  0.1878 0.3124
#> 
#> $`3`
#>             interval    est     se      z     p    2.5%  97.5%
#> from x to x        3 0.3427 0.0546 6.2779 0e+00  0.2357 0.4496
#> from x to m        3 0.8163 0.1103 7.3985 0e+00  0.6000 1.0325
#> from x to y        3 0.2347 0.0434 5.4129 0e+00  0.1497 0.3197
#> from m to x        3 0.0000 0.0387 0.0000 1e+00 -0.0759 0.0759
#> from m to m        3 0.2159 0.0609 3.5452 4e-04  0.0965 0.3352
#> from m to y        3 0.2648 0.0337 7.8561 0e+00  0.1987 0.3308
#> from y to x        3 0.0000 0.0487 0.0000 1e+00 -0.0954 0.0954
#> from y to m        3 0.0000 0.0807 0.0000 1e+00 -0.1582 0.1582
#> from y to y        3 0.1251 0.0299 4.1799 0e+00  0.0664 0.1837
#> 
#> $`4`
#>             interval    est     se      z      p    2.5%  97.5%
#> from x to x        4 0.2398 0.0536 4.4747 0.0000  0.1348 0.3448
#> from x to m        4 0.7100 0.1166 6.0868 0.0000  0.4814 0.9386
#> from x to y        4 0.3228 0.0526 6.1421 0.0000  0.2198 0.4258
#> from m to x        4 0.0000 0.0355 0.0000 1.0000 -0.0695 0.0695
#> from m to m        4 0.1295 0.0650 1.9937 0.0462  0.0022 0.2568
#> from m to y        4 0.1952 0.0310 6.3062 0.0000  0.1345 0.2559
#> from y to x        4 0.0000 0.0397 0.0000 1.0000 -0.0777 0.0777
#> from y to m        4 0.0000 0.0823 0.0000 1.0000 -0.1614 0.1614
#> from y to y        4 0.0625 0.0310 2.0161 0.0438  0.0017 0.1233
#> 
#> $`5`
#>             interval    est     se      z      p    2.5%  97.5%
#> from x to x        5 0.1678 0.0527 3.1821 0.0015  0.0644 0.2712
#> from x to m        5 0.5801 0.1172 4.9506 0.0000  0.3505 0.8098
#> from x to y        5 0.3456 0.0578 5.9813 0.0000  0.2323 0.4588
#> from m to x        5 0.0000 0.0312 0.0000 1.0000 -0.0611 0.0611
#> from m to m        5 0.0777 0.0642 1.2092 0.2266 -0.0482 0.2036
#> from m to y        5 0.1353 0.0299 4.5185 0.0000  0.0766 0.1940
#> from y to x        5 0.0000 0.0305 0.0000 1.0000 -0.0599 0.0599
#> from y to m        5 0.0000 0.0762 0.0000 1.0000 -0.1493 0.1493
#> from y to y        5 0.0313 0.0341 0.9180 0.3586 -0.0355 0.0980
#> 
summary(delta)
#>         effect interval         est         se         z            p
#> 1  from x to x        1  0.69977250 0.04706304 14.868833 5.252120e-50
#> 2  from x to m        1  0.64305123 0.06262344 10.268540 9.767187e-25
#> 3  from x to y        1 -0.09362266 0.02839956 -3.296624 9.785454e-04
#> 4  from m to x        1  0.00000000 0.03379460  0.000000 1.000000e+00
#> 5  from m to m        1  0.59989538 0.03263394 18.382559 1.812145e-75
#> 6  from m to y        1  0.29097114 0.03129013  9.299134 1.415942e-20
#> 7  from y to x        1  0.00000000 0.04468118  0.000000 1.000000e+00
#> 8  from y to m        1  0.00000000 0.04269308  0.000000 1.000000e+00
#> 9  from y to y        1  0.50007360 0.02735991 18.277603 1.247910e-74
#> 10 from x to x        2  0.48968155 0.05478810  8.937735 3.972267e-19
#> 11 from x to m        2  0.83575303 0.09399392  8.891565 6.025417e-19
#> 12 from x to y        2  0.07477656 0.03408921  2.193555 2.826742e-02
#> 13 from m to x        2  0.00000000 0.03992049  0.000000 1.000000e+00
#> 14 from m to m        2  0.35987447 0.05039929  7.140467 9.301408e-13
#> 15 from m to y        2  0.32005923 0.03652019  8.763899 1.886110e-18
#> 16 from y to x        2  0.00000000 0.05361054  0.000000 1.000000e+00
#> 17 from y to m        2  0.00000000 0.06779969  0.000000 1.000000e+00
#> 18 from y to y        2  0.25007360 0.03178830  7.866843 3.637020e-15
#> 19 from x to x        3  0.34266568 0.05458246  6.277945 3.430781e-10
#> 20 from x to m        3  0.81625470 0.11032736  7.398479 1.377527e-13
#> 21 from x to y        3  0.23472850 0.04336496  5.412861 6.202580e-08
#> 22 from m to x        3  0.00000000 0.03874085  0.000000 1.000000e+00
#> 23 from m to m        3  0.21588703 0.06089478  3.545247 3.922457e-04
#> 24 from m to y        3  0.26476625 0.03370194  7.856114 3.962356e-15
#> 25 from y to x        3  0.00000000 0.04868877  0.000000 1.000000e+00
#> 26 from y to m        3  0.00000000 0.08071268  0.000000 1.000000e+00
#> 27 from y to y        3  0.12505520 0.02991799  4.179933 2.915945e-05
#> 28 from x to x        4  0.23978802 0.05358737  4.474711 7.651461e-06
#> 29 from x to m        4  0.71001902 0.11664887  6.086806 1.151854e-09
#> 30 from x to y        4  0.32280682 0.05255619  6.142127 8.142363e-10
#> 31 from m to x        4  0.00000000 0.03546818  0.000000 1.000000e+00
#> 32 from m to m        4  0.12950963 0.06495896  1.993715 4.618325e-02
#> 33 from m to y        4  0.19521951 0.03095680  6.306191 2.859863e-10
#> 34 from y to x        4  0.00000000 0.03965867  0.000000 1.000000e+00
#> 35 from y to m        4  0.00000000 0.08232584  0.000000 1.000000e+00
#> 36 from y to y        4  0.06253681 0.03101888  2.016088 4.379072e-02
#> 37 from x to x        5  0.16779706 0.05273210  3.182067 1.462281e-03
#> 38 from x to m        5  0.58013311 0.11718525  4.950564 7.399865e-07
#> 39 from x to y        5  0.34557261 0.05777557  5.981293 2.213737e-09
#> 40 from m to x        5  0.00000000 0.03119055  0.000000 1.000000e+00
#> 41 from m to m        5  0.07769223 0.06424869  1.209242 2.265698e-01
#> 42 from m to y        5  0.13530769 0.02994511  4.518524 6.227219e-06
#> 43 from y to x        5  0.00000000 0.03054627  0.000000 1.000000e+00
#> 44 from y to m        5  0.00000000 0.07615080  0.000000 1.000000e+00
#> 45 from y to y        5  0.03127301 0.03406623  0.918006 3.586157e-01
#>            2.5%       97.5%
#> 1   0.607530630  0.79201437
#> 2   0.520311552  0.76579091
#> 3  -0.149284778 -0.03796055
#> 4  -0.066236197  0.06623620
#> 5   0.535934031  0.66385674
#> 6   0.229643605  0.35229867
#> 7  -0.087573505  0.08757350
#> 8  -0.083676896  0.08367690
#> 9   0.446449155  0.55369804
#> 10  0.382298845  0.59706425
#> 11  0.651528335  1.01997772
#> 12  0.007962932  0.14159019
#> 13 -0.078242730  0.07824273
#> 14  0.261093683  0.45865526
#> 15  0.248480975  0.39163748
#> 16 -0.105074728  0.10507473
#> 17 -0.132884960  0.13288496
#> 18  0.187769671  0.31237753
#> 19  0.235686018  0.44964534
#> 20  0.600017054  1.03249236
#> 21  0.149734736  0.31972227
#> 22 -0.075930674  0.07593067
#> 23  0.096535451  0.33523862
#> 24  0.198711668  0.33082084
#> 25 -0.095428226  0.09542823
#> 26 -0.158193946  0.15819395
#> 27  0.066417023  0.18369339
#> 28  0.134758701  0.34481734
#> 29  0.481391439  0.93864659
#> 30  0.219798571  0.42581506
#> 31 -0.069516355  0.06951635
#> 32  0.002192406  0.25682686
#> 33  0.134545289  0.25589373
#> 34 -0.077729571  0.07772957
#> 35 -0.161355689  0.16135569
#> 36  0.001740919  0.12333269
#> 37  0.064444048  0.27115007
#> 38  0.350454237  0.80981198
#> 39  0.232334570  0.45881066
#> 40 -0.061132360  0.06113236
#> 41 -0.048232879  0.20361734
#> 42  0.076616356  0.19399902
#> 43 -0.059869583  0.05986958
#> 44 -0.149252824  0.14925282
#> 45 -0.035495583  0.09804159
confint(delta, level = 0.95)
#>         effect interval        2.5 %      97.5 %
#> 1  from x to x        1  0.607530630  0.79201437
#> 2  from x to m        1  0.520311552  0.76579091
#> 3  from x to y        1 -0.149284778 -0.03796055
#> 4  from m to x        1 -0.066236197  0.06623620
#> 5  from m to m        1  0.535934031  0.66385674
#> 6  from m to y        1  0.229643605  0.35229867
#> 7  from y to x        1 -0.087573505  0.08757350
#> 8  from y to m        1 -0.083676896  0.08367690
#> 9  from y to y        1  0.446449155  0.55369804
#> 10 from x to x        2  0.382298845  0.59706425
#> 11 from x to m        2  0.651528335  1.01997772
#> 12 from x to y        2  0.007962932  0.14159019
#> 13 from m to x        2 -0.078242730  0.07824273
#> 14 from m to m        2  0.261093683  0.45865526
#> 15 from m to y        2  0.248480975  0.39163748
#> 16 from y to x        2 -0.105074728  0.10507473
#> 17 from y to m        2 -0.132884960  0.13288496
#> 18 from y to y        2  0.187769671  0.31237753
#> 19 from x to x        3  0.235686018  0.44964534
#> 20 from x to m        3  0.600017054  1.03249236
#> 21 from x to y        3  0.149734736  0.31972227
#> 22 from m to x        3 -0.075930674  0.07593067
#> 23 from m to m        3  0.096535451  0.33523862
#> 24 from m to y        3  0.198711668  0.33082084
#> 25 from y to x        3 -0.095428226  0.09542823
#> 26 from y to m        3 -0.158193946  0.15819395
#> 27 from y to y        3  0.066417023  0.18369339
#> 28 from x to x        4  0.134758701  0.34481734
#> 29 from x to m        4  0.481391439  0.93864659
#> 30 from x to y        4  0.219798571  0.42581506
#> 31 from m to x        4 -0.069516355  0.06951635
#> 32 from m to m        4  0.002192406  0.25682686
#> 33 from m to y        4  0.134545289  0.25589373
#> 34 from y to x        4 -0.077729571  0.07772957
#> 35 from y to m        4 -0.161355689  0.16135569
#> 36 from y to y        4  0.001740919  0.12333269
#> 37 from x to x        5  0.064444048  0.27115007
#> 38 from x to m        5  0.350454237  0.80981198
#> 39 from x to y        5  0.232334570  0.45881066
#> 40 from m to x        5 -0.061132360  0.06113236
#> 41 from m to m        5 -0.048232879  0.20361734
#> 42 from m to y        5  0.076616356  0.19399902
#> 43 from y to x        5 -0.059869583  0.05986958
#> 44 from y to m        5 -0.149252824  0.14925282
#> 45 from y to y        5 -0.035495583  0.09804159
plot(delta)