Simulate Intercept Vectors in a Discrete-Time Vector Autoregressive Model from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimNuN.RdThis function simulates random intercept vectors in a discrete-time vector autoregressive model from the multivariate normal distribution.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanEta(),
LinSDEMeanY(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMMeanEta(),
SSMMeanY(),
SimAlphaN(),
SimBetaN(),
SimBetaN2(),
SimBetaNCovariate(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimPhiN(),
SimPhiN2(),
SimPhiNCovariate(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()
Examples
n <- 10
nu <- c(0, 0, 0)
vcov_nu_l <- t(chol(0.001 * diag(3)))
SimNuN(n = n, nu = nu, vcov_nu_l = vcov_nu_l)
#> [[1]]
#> [1] 0.01834558 0.01113590 -0.06179864
#>
#> [[2]]
#> [1] -0.036221215 -0.004993000 0.004195649
#>
#> [[3]]
#> [1] 0.05200811 0.01056376 0.01108836
#>
#> [[4]]
#> [1] 0.018110223 0.006361179 0.005058385
#>
#> [[5]]
#> [1] 0.02579201 -0.03922788 0.01735349
#>
#> [[6]]
#> [1] 0.01468496 0.02095482 0.01274581
#>
#> [[7]]
#> [1] 0.029038781 0.007515091 -0.004008343
#>
#> [[8]]
#> [1] 0.06372791 -0.03531067 0.01063186
#>
#> [[9]]
#> [1] -0.033914896 0.003523242 -0.034511046
#>
#> [[10]]
#> [1] 0.008503482 -0.050140839 -0.080797255
#>