Steady-State Mean Vector for the Observed Variables in the State Space Model
Source:R/simStateSpace-ssm-mean-y.R
SSMMeanY.Rd
The steady-state mean vector for the observed variables in the state space model \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is given by $$ \boldsymbol{\nu} + \boldsymbol{\Lambda} \mathrm{Mean} \left( \boldsymbol{\eta} \right) $$ where \(\boldsymbol{\nu}\) is the vector of intercept values for the measurement model, \(\boldsymbol{\Lambda}\) is the matrix of factor loadings, and \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is the steady-state mean vector for the latent variables.
Arguments
- nu
Numeric vector. Vector of intercept values for the measurement model (\(\boldsymbol{\nu}\)).
- lambda
Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (\(\boldsymbol{\Lambda}\)).
- mean_eta
Numeric vector. Steady-state mean vector of the latent variables \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\).
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanEta()
,
LinSDEMeanY()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanEta()
,
SimAlphaN()
,
SimBetaN()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5
),
nrow = 3
)
alpha <- rep(x = 1, times = 3)
lambda <- diag(3)
nu <- rep(x = 1, times = 3)
mean_eta <- SSMMeanEta(
beta = beta,
alpha = alpha
)
SSMMeanY(
nu = nu,
lambda = lambda,
mean_eta = mean_eta
)
#> [1] 4.333333 7.666667 7.666667