Steady-State Mean Vector for the Latent Variables in the State Space Model
Source:R/simStateSpace-ssm-mean-eta.R
SSMMeanEta.RdThe steady-state mean vector for the latent variables in the state space model \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is given by $$ \mathrm{Mean} \left( \boldsymbol{\eta} \right) = \left( \mathbf{I} - \boldsymbol{\beta} \right)^{-1} \boldsymbol{\alpha} $$ where \(\boldsymbol{\beta}\) is the transition matrix relating the values of the latent variables at the previous to the current time point, \(\boldsymbol{\alpha}\) is a vector of constant values for the dynamic model, and \(\mathbf{I}\) is an identity matrix.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanEta(),
LinSDEMeanY(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMMeanY(),
SimAlphaN(),
SimBetaN(),
SimBetaN2(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimNuN(),
SimPhiN(),
SimPhiN2(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()