Steady-State Mean Vector for the Latent Variables in the State Space Model
Source:R/simStateSpace-ssm-mean-eta.R
SSMMeanEta.Rd
The steady-state mean vector for the latent variables in the state space model \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is given by $$ \mathrm{Mean} \left( \boldsymbol{\eta} \right) = \left( \mathbf{I} - \boldsymbol{\beta} \right)^{-1} \boldsymbol{\alpha} $$ where \(\boldsymbol{\beta}\) is the transition matrix relating the values of the latent variables at the previous to the current time point, \(\boldsymbol{\alpha}\) is a vector of constant values for the dynamic model, and \(\mathbf{I}\) is an identity matrix.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanEta()
,
LinSDEMeanY()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanY()
,
SimAlphaN()
,
SimBetaN()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()