Steady-State Mean Vector for the Observed Variables in the Linear Stochastic Differential Equation Model
Source:R/simStateSpace-lin-sde-mean-y.R
LinSDEMeanY.RdThe steady-state mean vector for the observed variables in the linear stochastic differential equation model \(\mathrm{Mean} \left( \mathbf{y} \right)\) is given by $$ \mathrm{Mean} \left( \mathbf{y} \right) = \boldsymbol{\nu} + \boldsymbol{\Lambda} \mathrm{Mean} \left( \boldsymbol{\eta} \right) $$ where \(\boldsymbol{\nu}\) is the vector of intercept values for the measurement model, \(\boldsymbol{\Lambda}\) is the matrix of factor loadings, and \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is the steady-state mean vector for the latent variables.
Arguments
- nu
Numeric vector. Vector of intercept values for the measurement model (\(\boldsymbol{\nu}\)).
- lambda
Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (\(\boldsymbol{\Lambda}\)).
- mean_eta
Numeric vector. Steady-state mean vector of the latent variables \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\).
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanEta(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMMeanEta(),
SSMMeanY(),
SimAlphaN(),
SimBetaN(),
SimBetaN2(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimNuN(),
SimPhiN(),
SimPhiN2(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()
Examples
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0.0, 0.0, -0.693
),
nrow = 3
)
iota <- rep(x = 1, times = 3)
lambda <- diag(3)
nu <- rep(x = 1, times = 3)
mean_eta <- LinSDEMeanEta(
phi = phi,
iota = iota
)
LinSDEMeanY(
nu = nu,
lambda = lambda,
mean_eta = mean_eta
)
#> [1] 3.801120 7.183295 7.128597