Steady-State Mean Vector for the Latent Variables in the Linear Stochastic Differential Equation Model
Source:R/simStateSpace-lin-sde-mean-eta.R
LinSDEMeanEta.Rd
The steady-state mean vector for the latent variables in the linear stochastic differential equation model \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is given by $$ \mathrm{Mean} \left( \boldsymbol{\eta} \right) = -\boldsymbol{\Phi}^{-1} \boldsymbol{\iota} $$ where \(\boldsymbol{\Phi}\) is the drift matrix, and \(\boldsymbol{\iota}\) is an unobserved term that is constant over time.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanY()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanEta()
,
SSMMeanY()
,
SimAlphaN()
,
SimBetaN()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()