Steady-State Mean Vector for the Latent Variables in the Linear Stochastic Differential Equation Model
Source:R/simStateSpace-lin-sde-mean-eta.R
LinSDEMeanEta.RdThe steady-state mean vector for the latent variables in the linear stochastic differential equation model \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is given by $$ \mathrm{Mean} \left( \boldsymbol{\eta} \right) = -\boldsymbol{\Phi}^{-1} \boldsymbol{\iota} $$ where \(\boldsymbol{\Phi}\) is the drift matrix, and \(\boldsymbol{\iota}\) is an unobserved term that is constant over time.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanY(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMMeanEta(),
SSMMeanY(),
SimAlphaN(),
SimBetaN(),
SimBetaN2(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimNuN(),
SimPhiN(),
SimPhiN2(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()