Simulate Transition Matrices from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimBetaN.Rd
This function simulates random transition matrices
from the multivariate normal distribution.
The function ensures that the generated transition matrices are stationary
using TestStationarity()
.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
n <- 10
beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5
),
nrow = 3
)
vcov_beta_vec_l <- t(chol(0.001 * diag(9)))
SimBetaN(n = n, beta = beta, vcov_beta_vec_l = vcov_beta_vec_l)
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 0.7103395 -0.0004829737 0.02370148
#> [2,] 0.4648248 0.5993776821 0.02773577
#> [3,] -0.1070794 0.3411360851 0.50429558
#>
#> [[2]]
#> [,1] [,2] [,3]
#> [1,] 0.6976265 -0.04028349 -0.002208314
#> [2,] 0.4990847 0.59542436 0.009435501
#> [3,] -0.1129286 0.37930240 0.462791572
#>
#> [[3]]
#> [,1] [,2] [,3]
#> [1,] 0.7198422 0.001385859 -0.04451615
#> [2,] 0.4743631 0.635564236 0.03050132
#> [3,] -0.1205753 0.434244293 0.47389458
#>
#> [[4]]
#> [,1] [,2] [,3]
#> [1,] 0.7029540 -0.01665823 0.03859427
#> [2,] 0.5064191 0.66389629 0.04366238
#> [3,] -0.1188096 0.39959059 0.49030928
#>
#> [[5]]
#> [,1] [,2] [,3]
#> [1,] 0.7113137 -0.06108355 -0.001098922
#> [2,] 0.4973354 0.55895700 0.048238135
#> [3,] -0.1128323 0.40398333 0.471195115
#>
#> [[6]]
#> [,1] [,2] [,3]
#> [1,] 0.68236604 -0.01742727 0.01244699
#> [2,] 0.49408692 0.62516893 -0.03988741
#> [3,] -0.07494344 0.34096968 0.52048583
#>
#> [[7]]
#> [,1] [,2] [,3]
#> [1,] 0.7111349 -0.06607776 -0.001751393
#> [2,] 0.4447285 0.58518340 -0.007643585
#> [3,] -0.1274092 0.39893216 0.435273121
#>
#> [[8]]
#> [,1] [,2] [,3]
#> [1,] 0.73225375 0.07626581 -0.001247313
#> [2,] 0.48959538 0.56803899 0.026292756
#> [3,] -0.07884372 0.37188012 0.485384475
#>
#> [[9]]
#> [,1] [,2] [,3]
#> [1,] 0.70533896 0.03822759 0.005504865
#> [2,] 0.48628058 0.62547649 0.039177440
#> [3,] -0.09795049 0.36980611 0.485140003
#>
#> [[10]]
#> [,1] [,2] [,3]
#> [1,] 0.7160153 -0.04312751 0.003212323
#> [2,] 0.5164538 0.57274293 0.067334232
#> [3,] -0.1147178 0.45638168 0.501401591
#>