Simulate Transition Matrices from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimBetaN.Rd
This function simulates random transition matrices
from the multivariate normal distribution.
The function ensures that the generated transition matrices are stationary
using TestStationarity()
.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanEta()
,
LinSDEMeanY()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanEta()
,
SSMMeanY()
,
SimAlphaN()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
n <- 10
beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5
),
nrow = 3
)
vcov_beta_vec_l <- t(chol(0.001 * diag(9)))
SimBetaN(n = n, beta = beta, vcov_beta_vec_l = vcov_beta_vec_l)
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 0.7113137 -0.06108355 -0.001098922
#> [2,] 0.4973354 0.55895700 0.048238135
#> [3,] -0.1128323 0.40398333 0.471195115
#>
#> [[2]]
#> [,1] [,2] [,3]
#> [1,] 0.68236604 -0.01742727 0.01244699
#> [2,] 0.49408692 0.62516893 -0.03988741
#> [3,] -0.07494344 0.34096968 0.52048583
#>
#> [[3]]
#> [,1] [,2] [,3]
#> [1,] 0.7111349 -0.06607776 -0.001751393
#> [2,] 0.4447285 0.58518340 -0.007643585
#> [3,] -0.1274092 0.39893216 0.435273121
#>
#> [[4]]
#> [,1] [,2] [,3]
#> [1,] 0.73225375 0.07626581 -0.001247313
#> [2,] 0.48959538 0.56803899 0.026292756
#> [3,] -0.07884372 0.37188012 0.485384475
#>
#> [[5]]
#> [,1] [,2] [,3]
#> [1,] 0.70533896 0.03822759 0.005504865
#> [2,] 0.48628058 0.62547649 0.039177440
#> [3,] -0.09795049 0.36980611 0.485140003
#>
#> [[6]]
#> [,1] [,2] [,3]
#> [1,] 0.7160153 -0.04312751 0.003212323
#> [2,] 0.5164538 0.57274293 0.067334232
#> [3,] -0.1147178 0.45638168 0.501401591
#>
#> [[7]]
#> [,1] [,2] [,3]
#> [1,] 0.71210433 2.089554e-06 0.03616728
#> [2,] 0.52169502 5.799715e-01 0.05736071
#> [3,] -0.09458413 4.390411e-01 0.53490134
#>
#> [[8]]
#> [,1] [,2] [,3]
#> [1,] 0.69462816 -0.01217511 -0.007735489
#> [2,] 0.50910817 0.58401056 -0.006206552
#> [3,] -0.08221384 0.44439135 0.469218457
#>
#> [[9]]
#> [,1] [,2] [,3]
#> [1,] 0.74608043 -0.0344481 0.01618050
#> [2,] 0.56780036 0.6124042 -0.04549078
#> [3,] -0.07470552 0.3636874 0.52246809
#>
#> [[10]]
#> [,1] [,2] [,3]
#> [1,] 0.7224229 -0.06306017 -0.002279254
#> [2,] 0.4721753 0.61371805 0.026453144
#> [3,] -0.1165079 0.35026889 0.527437274
#>