Simulate Intercept Vectors in a Discrete-Time Vector Autoregressive Model from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimAlphaN.Rd
This function simulates random intercept vectors in a discrete-time vector autoregressive model from the multivariate normal distribution.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanEta()
,
LinSDEMeanY()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanEta()
,
SSMMeanY()
,
SimBetaN()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
n <- 10
alpha <- c(0, 0, 0)
vcov_alpha_l <- t(chol(0.001 * diag(3)))
SimAlphaN(n = n, alpha = alpha, vcov_alpha_l = vcov_alpha_l)
#> [[1]]
#> [1] 0.010339474 -0.035175202 -0.007079378
#>
#> [[2]]
#> [1] -0.0006223179 -0.0588639149 0.0237014751
#>
#> [[3]]
#> [1] 0.004295580 -0.003727485 -0.002373460
#>
#> [[4]]
#> [1] -0.012928587 -0.040283485 -0.004575643
#>
#> [[5]]
#> [1] -0.002208314 0.009435501 -0.037208428
#>
#> [[6]]
#> [1] 0.01984215 -0.02563693 -0.02057535
#>
#> [[7]]
#> [1] 0.03556424 0.03424429 -0.04451615
#>
#> [[8]]
#> [1] -0.02610542 -0.08441763 0.00295405
#>
#> [[9]]
#> [1] -0.01880957 -0.01665823 0.06389629
#>
#> [[10]]
#> [1] 0.03859427 0.04366238 -0.00969072
#>