Simulate Intercept Vectors in a Discrete-Time Vector Autoregressive Model from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimAlphaN.RdThis function simulates random intercept vectors in a discrete-time vector autoregressive model from the multivariate normal distribution.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanEta(),
LinSDEMeanY(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMMeanEta(),
SSMMeanY(),
SimBetaN(),
SimBetaN2(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimNuN(),
SimPhiN(),
SimPhiN2(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()
Examples
n <- 10
alpha <- c(0, 0, 0)
vcov_alpha_l <- t(chol(0.001 * diag(3)))
SimAlphaN(n = n, alpha = alpha, vcov_alpha_l = vcov_alpha_l)
#> [[1]]
#> [1] -0.020575349 0.001385859 0.035564236
#>
#> [[2]]
#> [1] -0.04451615 0.03050132 -0.02610542
#>
#> [[3]]
#> [1] 0.00295405 0.00641909 -0.01880957
#>
#> [[4]]
#> [1] 0.0638962949 -0.0004094139 0.0385942726
#>
#> [[5]]
#> [1] -0.009690720 0.006371313 0.011313655
#>
#> [[6]]
#> [1] -0.01283227 -0.06108355 -0.04104300
#>
#> [[7]]
#> [1] -0.001098922 0.048238135 -0.028804885
#>
#> [[8]]
#> [1] -0.01763396 -0.00591308 0.02505656
#>
#> [[9]]
#> [1] 0.02516893 -0.05903032 0.01244699
#>
#> [[10]]
#> [1] 0.020485834 0.001943539 0.011134900
#>