Simulate Intercept Vectors in a Discrete-Time Vector Autoregressive Model from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimAlphaN.RdThis function simulates random intercept vectors in a discrete-time vector autoregressive model from the multivariate normal distribution.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanEta(),
LinSDEMeanY(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMInterceptEta(),
SSMInterceptY(),
SSMMeanEta(),
SSMMeanY(),
SimBetaN(),
SimBetaN2(),
SimBetaNCovariate(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimNuN(),
SimPhiN(),
SimPhiN2(),
SimPhiNCovariate(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()
Examples
n <- 10
alpha <- c(0, 0, 0)
vcov_alpha_l <- t(chol(0.001 * diag(3)))
SimAlphaN(n = n, alpha = alpha, vcov_alpha_l = vcov_alpha_l)
#> [[1]]
#> [1] 0.03556424 0.03424429 -0.04451615
#>
#> [[2]]
#> [1] -0.02610542 -0.08441763 0.00295405
#>
#> [[3]]
#> [1] -0.01880957 -0.01665823 0.06389629
#>
#> [[4]]
#> [1] 0.03859427 0.04366238 -0.00969072
#>
#> [[5]]
#> [1] 0.011313655 -0.002664596 -0.012832273
#>
#> [[6]]
#> [1] -0.041042996 0.003983328 -0.001098922
#>
#> [[7]]
#> [1] -0.02880489 0.02077902 -0.01763396
#>
#> [[8]]
#> [1] 0.02505656 -0.01742727 0.02516893
#>
#> [[9]]
#> [1] 0.01244699 -0.03988741 0.02048583
#>
#> [[10]]
#> [1] 0.01113490 -0.05527155 -0.02740924
#>