Simulate Intercept Vectors in a Discrete-Time Vector Autoregressive Model from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimAlphaN.Rd
This function simulates random intercept vectors in a discrete-time vector autoregressive model from the multivariate normal distribution.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECov()
,
LinSDEMean()
,
SSMCov()
,
SSMMean()
,
SimBetaN()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
n <- 10
alpha <- c(0, 0, 0)
vcov_alpha_l <- t(chol(0.001 * diag(3)))
SimAlphaN(n = n, alpha = alpha, vcov_alpha_l = vcov_alpha_l)
#> [[1]]
#> [,1]
#> [1,] 0.010339474
#> [2,] -0.035175202
#> [3,] -0.007079378
#>
#> [[2]]
#> [,1]
#> [1,] -0.0006223179
#> [2,] -0.0588639149
#> [3,] 0.0237014751
#>
#> [[3]]
#> [,1]
#> [1,] 0.004295580
#> [2,] -0.003727485
#> [3,] -0.002373460
#>
#> [[4]]
#> [,1]
#> [1,] -0.012928587
#> [2,] -0.040283485
#> [3,] -0.004575643
#>
#> [[5]]
#> [,1]
#> [1,] -0.002208314
#> [2,] 0.009435501
#> [3,] -0.037208428
#>
#> [[6]]
#> [,1]
#> [1,] 0.01984215
#> [2,] -0.02563693
#> [3,] -0.02057535
#>
#> [[7]]
#> [,1]
#> [1,] 0.03556424
#> [2,] 0.03424429
#> [3,] -0.04451615
#>
#> [[8]]
#> [,1]
#> [1,] -0.02610542
#> [2,] -0.08441763
#> [3,] 0.00295405
#>
#> [[9]]
#> [,1]
#> [1,] -0.01880957
#> [2,] -0.01665823
#> [3,] 0.06389629
#>
#> [[10]]
#> [,1]
#> [1,] 0.03859427
#> [2,] 0.04366238
#> [3,] -0.00969072
#>