Skip to contents

This function simulates random drift matrices from the multivariate normal distribution. The function ensures that the generated drift matrices are stable using TestPhi().

Usage

SimPhiN(n, phi, vcov_phi_vec_l)

Arguments

n

Positive integer. Number of replications.

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)).

vcov_phi_vec_l

Numeric matrix. Cholesky factorization (t(chol(vcov_phi_vec))) of the sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).

Value

Returns a list of random drift matrices.

Author

Ivan Jacob Agaloos Pesigan

Examples

n <- 10
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
vcov_phi_vec_l <- t(chol(0.001 * diag(9)))
SimPhiN(n = n, phi = phi, vcov_phi_vec_l = vcov_phi_vec_l)
#> [[1]]
#>            [,1]        [,2]         [,3]
#> [1,] -0.3940391  0.02006462  0.036298455
#> [2,]  0.7750876 -0.53757330  0.004114273
#> [3,] -0.4390440  0.79168561 -0.658909825
#> 
#> [[2]]
#>            [,1]        [,2]         [,3]
#> [1,] -0.3683340 -0.04649579  0.029924476
#> [2,]  0.7907446 -0.48417969 -0.009478689
#> [3,] -0.4412395  0.77062174 -0.718107428
#> 
#> [[3]]
#>            [,1]        [,2]        [,3]
#> [1,] -0.3751411 -0.04205268 -0.03070977
#> [2,]  0.6972540 -0.50808769 -0.01042189
#> [3,] -0.4660124  0.76739283 -0.74768998
#> 
#> [[4]]
#>            [,1]         [,2]         [,3]
#> [1,] -0.4274366 -0.001605503  0.006598691
#> [2,]  0.7556987 -0.451472267 -0.053251434
#> [3,] -0.4025106  0.729653853 -0.674039057
#> 
#> [[5]]
#>            [,1]        [,2]        [,3]
#> [1,] -0.3320266  0.01259486  0.02882401
#> [2,]  0.7882577 -0.51320321 -0.09035740
#> [3,] -0.5213225  0.69963708 -0.67164797
#> 
#> [[6]]
#>            [,1]         [,2]        [,3]
#> [1,] -0.3827785  0.006521344 -0.04028428
#> [2,]  0.7554067 -0.487297198 -0.03562154
#> [3,] -0.4210293  0.686215098 -0.69759019
#> 
#> [[7]]
#>            [,1]         [,2]         [,3]
#> [1,] -0.3331087  0.006509875  0.007064052
#> [2,]  0.7194577 -0.467016218 -0.055917821
#> [3,] -0.4601011  0.713179085 -0.745877582
#> 
#> [[8]]
#>            [,1]        [,2]         [,3]
#> [1,] -0.3931727 -0.02659593  0.028660207
#> [2,]  0.7884320 -0.52635750 -0.008060009
#> [3,] -0.4209401  0.72497783 -0.712699327
#> 
#> [[9]]
#>            [,1]        [,2]         [,3]
#> [1,] -0.3560270  0.03180894  0.009915378
#> [2,]  0.8506971 -0.45974081 -0.049780640
#> [3,] -0.4525555  0.69707437 -0.712712377
#> 
#> [[10]]
#>            [,1]       [,2]         [,3]
#> [1,] -0.3682593 -0.0206822 -0.009554499
#> [2,]  0.7559274 -0.4453428 -0.020656927
#> [3,] -0.4752199  0.6953087 -0.733582313
#>