Simulate Intercept Vectors in a Continuous-Time Vector Autoregressive Model from the Multivariate Normal Distribution
Source:R/RcppExports.R
SimIotaN.Rd
This function simulates random intercept vectors in a continuous-time vector autoregressive model from the multivariate normal distribution.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanEta()
,
LinSDEMeanY()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanEta()
,
SSMMeanY()
,
SimAlphaN()
,
SimBetaN()
,
SimCovDiagN()
,
SimCovN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()
Examples
n <- 10
iota <- c(0, 0, 0)
vcov_iota_l <- t(chol(0.001 * diag(3)))
SimIotaN(n = n, iota = iota, vcov_iota_l = vcov_iota_l)
#> [[1]]
#> [1] 0.0303682339 0.0264968137 0.0004621614
#>
#> [[2]]
#> [1] -0.01423570 -0.03370255 0.01462578
#>
#> [[3]]
#> [1] -0.01332358 -0.03574804 0.01346426
#>
#> [[4]]
#> [1] -0.02434587 0.01219682 0.03603814
#>
#> [[5]]
#> [1] -0.026119255 0.048167892 0.006704065
#>
#> [[6]]
#> [1] -0.03109606 0.07280703 -0.03827979
#>
#> [[7]]
#> [1] 0.027558781 0.006540289 0.037142750
#>
#> [[8]]
#> [1] 0.04284297 -0.01569974 0.02092334
#>
#> [[9]]
#> [1] -0.010518354 -0.022416387 -0.002043949
#>
#> [[10]]
#> [1] -0.004537512 -0.016906034 0.004346010
#>