Simulate Transition Matrices from the Multivariate Normal Distribution and Project to Stability
Source:R/RcppExports.R
SimBetaN2.Rd
This function simulates random transition matrices
from the multivariate normal distribution
then projects each draw to the stability region
using ProjectToStability()
.
Arguments
- n
Positive integer. Number of replications.
- beta
Numeric matrix. The transition matrix (\(\boldsymbol{\beta}\)).
- vcov_beta_vec_l
Numeric matrix. Cholesky factorization (
t(chol(vcov_beta_vec))
) of the sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\beta} \right)\).- margin
Double in \((0, 1)\). Target upper bound for the spectral radius (default = 0.98).
- tol
Small positive double added to the denominator in the scaling factor to avoid division by zero (default = 1e-12).
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanEta()
,
LinSDEMeanY()
,
ProjectToHurwitz()
,
ProjectToStability()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanEta()
,
SSMMeanY()
,
SimAlphaN()
,
SimBetaN()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimPhiN2()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
SpectralRadius()
,
TestPhi()
,
TestPhiHurwitz()
,
TestStability()
,
TestStationarity()
Examples
n <- 10
beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5
),
nrow = 3
)
vcov_beta_vec_l <- t(chol(0.001 * diag(9)))
SimBetaN2(n = n, beta = beta, vcov_beta_vec_l = vcov_beta_vec_l)
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 0.6951546 -0.02030443 -0.01197810
#> [2,] 0.5143825 0.57769312 0.02123165
#> [3,] -0.1201055 0.42458508 0.51605138
#>
#> [[2]]
#> [,1] [,2] [,3]
#> [1,] 0.7198451 -0.03364059 0.03415159
#> [2,] 0.5155194 0.58020576 0.05256328
#> [3,] -0.1076897 0.40736615 0.51225458
#>
#> [[3]]
#> [,1] [,2] [,3]
#> [1,] 0.7505202 0.004007384 0.036394327
#> [2,] 0.4660898 0.652494039 0.001795825
#> [3,] -0.1155592 0.350346489 0.546528005
#>
#> [[4]]
#> [,1] [,2] [,3]
#> [1,] 0.71801095 0.03740576 0.009051799
#> [2,] 0.50766860 0.60818978 -0.084207593
#> [3,] -0.07587242 0.35015607 0.543027168
#>
#> [[5]]
#> [,1] [,2] [,3]
#> [1,] 0.6966009 -0.006949438 0.02310965
#> [2,] 0.5150771 0.612086060 0.01979430
#> [3,] -0.1031108 0.355249733 0.55322493
#>
#> [[6]]
#> [,1] [,2] [,3]
#> [1,] 0.6744090 0.01673866 -0.03756004
#> [2,] 0.4929289 0.60473418 0.05001538
#> [3,] -0.1287554 0.41205901 0.50510777
#>
#> [[7]]
#> [,1] [,2] [,3]
#> [1,] 0.6342611 0.01146601 0.05195525
#> [2,] 0.5533864 0.63567517 -0.02491503
#> [3,] -0.0917272 0.41117277 0.51925151
#>
#> [[8]]
#> [,1] [,2] [,3]
#> [1,] 0.7059596 -0.01193983 0.03036823
#> [2,] 0.5401671 0.63462435 0.02649681
#> [3,] -0.1186208 0.39158655 0.50046216
#>
#> [[9]]
#> [,1] [,2] [,3]
#> [1,] 0.68576430 -0.01684809 0.01346426
#> [2,] 0.46629745 0.58667642 0.03964171
#> [3,] -0.08537422 0.36425196 0.47565413
#>
#> [[10]]
#> [,1] [,2] [,3]
#> [1,] 0.7360381 0.04816789 -0.03109606
#> [2,] 0.4561622 0.60670407 0.07280703
#> [3,] -0.1261193 0.41443740 0.46172021
#>