Simulate Transition Matrices from the Multivariate Normal Distribution and Project to Stability
Source:R/RcppExports.R
SimBetaN2.RdThis function simulates random transition matrices
from the multivariate normal distribution
then projects each draw to the stability region
using ProjectToStability().
Arguments
- n
Positive integer. Number of replications.
- beta
Numeric matrix. The transition matrix (\(\boldsymbol{\beta}\)).
- vcov_beta_vec_l
Numeric matrix. Cholesky factorization (
t(chol(vcov_beta_vec))) of the sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\beta} \right)\).- margin
Double in \((0, 1)\). Target upper bound for the spectral radius (default = 0.98).
- tol
Small positive double added to the denominator in the scaling factor to avoid division by zero (default = 1e-12).
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanEta(),
LinSDEMeanY(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMInterceptEta(),
SSMInterceptY(),
SSMMeanEta(),
SSMMeanY(),
SimAlphaN(),
SimBetaN(),
SimBetaNCovariate(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimNuN(),
SimPhiN(),
SimPhiN2(),
SimPhiNCovariate(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()
Examples
n <- 10
beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0, 0, 0.5
),
nrow = 3
)
vcov_beta_vec_l <- t(chol(0.001 * diag(9)))
SimBetaN2(n = n, beta = beta, vcov_beta_vec_l = vcov_beta_vec_l)
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 0.6798945 0.02458508 0.01605138
#> [2,] 0.4796956 0.58802190 0.04630413
#> [3,] -0.1223069 0.42123165 0.51984513
#>
#> [[2]]
#> [,1] [,2] [,3]
#> [1,] 0.6923103 0.007366145 0.01225458
#> [2,] 0.4663594 0.634151590 0.02122083
#> [3,] -0.1197942 0.452563278 0.55052020
#>
#> [[3]]
#> [,1] [,2] [,3]
#> [1,] 0.68444080 -0.04965351 0.04652801
#> [2,] 0.50400738 0.63639433 -0.03453232
#> [3,] -0.04750596 0.40179583 0.51801095
#>
#> [[4]]
#> [,1] [,2] [,3]
#> [1,] 0.72412758 -0.04984393 0.04302717
#> [2,] 0.53740576 0.60905180 0.02610376
#> [3,] -0.09181022 0.31579241 0.49660088
#>
#> [[5]]
#> [,1] [,2] [,3]
#> [1,] 0.69688925 -0.04475027 0.05322493
#> [2,] 0.49305056 0.62310965 0.07649833
#> [3,] -0.08791394 0.41979430 0.47440904
#>
#> [[6]]
#> [,1] [,2] [,3]
#> [1,] 0.67124464 0.01205901 0.005107774
#> [2,] 0.51673866 0.56243996 0.050158536
#> [3,] -0.09526582 0.45001538 0.434261085
#>
#> [[7]]
#> [,1] [,2] [,3]
#> [1,] 0.70827280 0.01117277 0.01925151
#> [2,] 0.51146601 0.65195525 -0.03432050
#> [3,] -0.06432483 0.37508497 0.50595960
#>
#> [[8]]
#> [,1] [,2] [,3]
#> [1,] 0.68137923 -0.008413454 0.0004621614
#> [2,] 0.48806017 0.630368234 0.0142915462
#> [3,] -0.06537565 0.426496814 0.4857642965
#>
#> [[9]]
#> [,1] [,2] [,3]
#> [1,] 0.7146258 -0.03574804 -0.02434587
#> [2,] 0.4831519 0.61346426 0.01219682
#> [3,] -0.1133236 0.43964171 0.53603814
#>
#> [[10]]
#> [,1] [,2] [,3]
#> [1,] 0.67388074 0.0144374 -0.03827979
#> [2,] 0.54816789 0.5689039 0.00764590
#> [3,] -0.09329593 0.4728070 0.52755878
#>