Simulate Random Drift Matrices from the Multivariate Normal Distribution and Project to Hurwitz
Source:R/RcppExports.R
SimPhiN2.Rd
This function simulates random dirft matrices
from the multivariate normal distribution
then projects each draw to the Hurwitz-stable region
using ProjectToHurwitz()
.
Arguments
- n
Positive integer. Number of replications.
- phi
Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)).
- vcov_phi_vec_l
Numeric matrix. Cholesky factorization (
t(chol(vcov_phi_vec))
) of the sampling variance-covariance matrix of \(\mathrm{vec} \left( \boldsymbol{\Phi} \right)\).- margin
Positive numeric. Target buffer so that the spectral abscissa is \(\le -\text{margin}\) (default
1e-3
).
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDECovEta()
,
LinSDECovY()
,
LinSDEMeanEta()
,
LinSDEMeanY()
,
ProjectToHurwitz()
,
ProjectToStability()
,
SSMCovEta()
,
SSMCovY()
,
SSMMeanEta()
,
SSMMeanY()
,
SimAlphaN()
,
SimBetaN()
,
SimBetaN2()
,
SimCovDiagN()
,
SimCovN()
,
SimIotaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
SpectralRadius()
,
TestPhi()
,
TestPhiHurwitz()
,
TestStability()
,
TestStationarity()
Examples
n <- 10
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
vcov_phi_vec_l <- t(chol(0.001 * diag(9)))
SimPhiN2(n = n, phi = phi, vcov_phi_vec_l = vcov_phi_vec_l)
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] -0.4185958 0.03544033 0.01125124
#> [2,] 0.8447213 -0.51480860 -0.01432882
#> [3,] -0.4965570 0.76014586 -0.72571647
#>
#> [[2]]
#> [,1] [,2] [,3]
#> [1,] -0.3764119 -0.01272371 0.022433221
#> [2,] 0.8306660 -0.48574320 -0.003152393
#> [3,] -0.4440828 0.72916276 -0.761300011
#>
#> [[3]]
#> [,1] [,2] [,3]
#> [1,] -0.3706247 0.01669406 0.03715096
#> [2,] 0.7944109 -0.53390375 -0.01833935
#> [3,] -0.4665633 0.68689191 -0.77726100
#>
#> [[4]]
#> [,1] [,2] [,3]
#> [1,] -0.3589059 0.04866833 -0.039311008
#> [2,] 0.7840827 -0.55322285 -0.006545449
#> [3,] -0.4364258 0.74984666 -0.697789062
#>
#> [[5]]
#> [,1] [,2] [,3]
#> [1,] -0.3389029 -0.02608582 -0.01433089
#> [2,] 0.7594333 -0.55853395 0.05631861
#> [3,] -0.4391487 0.76129100 -0.68037785
#>
#> [[6]]
#> [,1] [,2] [,3]
#> [1,] -0.4039834 -0.03918039 0.01349223
#> [2,] 0.8135478 -0.50957418 -0.03094402
#> [3,] -0.4545692 0.69231999 -0.69244952
#>
#> [[7]]
#> [,1] [,2] [,3]
#> [1,] -0.3568825 -0.01752359 0.004622456
#> [2,] 0.7530828 -0.55663322 0.015697562
#> [3,] -0.4234681 0.71061936 -0.739784864
#>
#> [[8]]
#> [,1] [,2] [,3]
#> [1,] -0.3486296 0.02171973 -0.023328379
#> [2,] 0.7618575 -0.51028245 0.007424959
#> [3,] -0.4905887 0.67627349 -0.778302392
#>
#> [[9]]
#> [,1] [,2] [,3]
#> [1,] -0.3805128 -0.003766315 -0.01894584
#> [2,] 0.7308905 -0.537916012 -0.01561479
#> [3,] -0.4376627 0.749233953 -0.66250503
#>
#> [[10]]
#> [,1] [,2] [,3]
#> [1,] -0.3516522 -0.001605182 -0.0008405682
#> [2,] 0.7806180 -0.566566704 -0.0517032653
#> [3,] -0.4418294 0.726174356 -0.7445184598
#>