Intercept from Steady-State Mean Vector for the Latent Variables in the State Space Model
Source:R/simStateSpace-ssm-intercept-eta.R
SSMInterceptEta.RdThe intercept vector for the latent variables in the state space model \(\boldsymbol{\alpha}\) is given by $$ \boldsymbol{\alpha} = \mathrm{Mean} \left( \boldsymbol{\eta} \right) - \boldsymbol{\beta} \mathrm{Mean} \left( \boldsymbol{\eta} \right) $$ where \(\boldsymbol{\beta}\) is the transition matrix relating the values of the latent variables at the previous to the current time point, \(\mathrm{Mean} \left( \boldsymbol{\eta} \right)\) is the steady-state mean vector for the latent variables.
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM(),
LinSDECovEta(),
LinSDECovY(),
LinSDEMeanEta(),
LinSDEMeanY(),
ProjectToHurwitz(),
ProjectToStability(),
SSMCovEta(),
SSMCovY(),
SSMInterceptY(),
SSMMeanEta(),
SSMMeanY(),
SimAlphaN(),
SimBetaN(),
SimBetaN2(),
SimBetaNCovariate(),
SimCovDiagN(),
SimCovN(),
SimIotaN(),
SimNuN(),
SimPhiN(),
SimPhiN2(),
SimPhiNCovariate(),
SimSSMFixed(),
SimSSMIVary(),
SimSSMLinGrowth(),
SimSSMLinGrowthIVary(),
SimSSMLinSDEFixed(),
SimSSMLinSDEIVary(),
SimSSMOUFixed(),
SimSSMOUIVary(),
SimSSMVARFixed(),
SimSSMVARIVary(),
SpectralRadius(),
TestPhi(),
TestPhiHurwitz(),
TestStability(),
TestStationarity()
Examples
beta <- matrix(
data = c(
0.7, 0.5, -0.1,
0.0, 0.6, 0.4,
0.0, 0.0, 0.5
),
nrow = 3
)
alpha <- rep(x = 1, times = 3)
mean_eta <- SSMMeanEta(
beta = beta,
alpha = alpha
)
SSMInterceptEta(
beta = beta,
mean_eta = mean_eta
)
#> [1] 1 1 1