Skip to contents

This function simulates data from a vector autoregressive model using a state-space model parameterization and fits the model using the dynr package. The process is repeated R times. It assumes that the parameters remain constant across individuals and over time. At the momennt, the function only supports type = 0.

Usage

PBSSMVARFixed(
  R,
  n,
  time,
  mu0,
  sigma0_l,
  alpha,
  beta,
  psi_l,
  type = 0,
  x = NULL,
  gamma = NULL,
  mu0_fixed = FALSE,
  sigma0_fixed = FALSE,
  alpha_level = 0.05,
  max_eval = 1e+05,
  optimization_flag = TRUE,
  hessian_flag = FALSE,
  verbose = FALSE,
  weight_flag = FALSE,
  debug_flag = FALSE,
  perturb_flag = FALSE,
  ncores = NULL,
  seed = NULL
)

Arguments

R

Positive integer. Number of bootstrap samples.

n

Positive integer. Number of individuals.

time

Positive integer. Number of time points.

mu0

Numeric vector. Mean of initial latent variable values (\(\boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}\)).

sigma0_l

Numeric matrix. Cholesky factorization (t(chol(sigma0))) of the covariance matrix of initial latent variable values (\(\boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0}\)).

alpha

Numeric vector. Vector of constant values for the dynamic model (\(\boldsymbol{\alpha}\)).

beta

Numeric matrix. Transition matrix relating the values of the latent variables at the previous to the current time point (\(\boldsymbol{\beta}\)).

psi_l

Numeric matrix. Cholesky factorization (t(chol(psi))) of the covariance matrix of the process noise (\(\boldsymbol{\Psi}\)).

type

Integer. State space model type. See Details for more information.

x

List. Each element of the list is a matrix of covariates for each individual i in n. The number of columns in each matrix should be equal to time.

gamma

Numeric matrix. Matrix linking the covariates to the latent variables at current time point (\(\boldsymbol{\Gamma}\)).

mu0_fixed

Logical. If mu0_fixed = TRUE, fix the initial mean vector to mu0. If mu0_fixed = FALSE, mu0 is estimated.

sigma0_fixed

Logical. If sigma0_fixed = TRUE, fix the initial covariance matrix to tcrossprod(sigma0_l). If sigma0_fixed = FALSE, sigma0 is estimated.

alpha_level

Numeric vector. Significance level \(\alpha\).

max_eval

Positive integer. Maximum evaluation.

optimization_flag

a flag (TRUE/FALSE) indicating whether optimization is to be done.

hessian_flag

a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.

verbose

a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed

weight_flag

a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual

debug_flag

a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes

perturb_flag

a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting.

ncores

Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of bootstrap samples R is a large value.

seed

Random seed.

Value

Returns an object of class statespacepb which is a list with the following elements:

call

Function call.

args

Function arguments.

thetahatstar

Sampling distribution of \(\boldsymbol{\hat{\theta}}\).

vcov

Sampling variance-covariance matrix of \(\boldsymbol{\hat{\theta}}\).

est

Vector of estimated \(\boldsymbol{\hat{\theta}}\).

fun

Function used ("PBSSMVARFixed").

Details

Type 0

The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\eta}_{i, t} $$ where \(\mathbf{y}_{i, t}\) represents a vector of observed variables and \(\boldsymbol{\eta}_{i, t}\) a vector of latent variables for individual \(i\) and time \(t\). Since the observed and latent variables are equal, we only generate data from the dynamic structure.

The dynamic structure is given by $$ \boldsymbol{\eta}_{i, t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{i, t - 1} + \boldsymbol{\zeta}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\zeta}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Psi} \right) $$ where \(\boldsymbol{\eta}_{i, t}\), \(\boldsymbol{\eta}_{i, t - 1}\), and \(\boldsymbol{\zeta}_{i, t}\) are random variables, and \(\boldsymbol{\alpha}\), \(\boldsymbol{\beta}\), and \(\boldsymbol{\Psi}\) are model parameters. Here, \(\boldsymbol{\eta}_{i, t}\) is a vector of latent variables at time \(t\) and individual \(i\), \(\boldsymbol{\eta}_{i, t - 1}\) represents a vector of latent variables at time \(t - 1\) and individual \(i\), and \(\boldsymbol{\zeta}_{i, t}\) represents a vector of dynamic noise at time \(t\) and individual \(i\). \(\boldsymbol{\alpha}\) denotes a vector of intercepts, \(\boldsymbol{\beta}\) a matrix of autoregression and cross regression coefficients, and \(\boldsymbol{\Psi}\) the covariance matrix of \(\boldsymbol{\zeta}_{i, t}\).

An alternative representation of the dynamic noise is given by $$ \boldsymbol{\zeta}_{i, t} = \boldsymbol{\Psi}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) $$ where \( \left( \boldsymbol{\Psi}^{\frac{1}{2}} \right) \left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Psi} . \)

Type 1

The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\eta}_{i, t} . $$

The dynamic structure is given by $$ \boldsymbol{\eta}_{i, t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{i, t - 1} + \boldsymbol{\Gamma} \mathbf{x}_{i, t} + \boldsymbol{\zeta}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\zeta}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Psi} \right) $$ where \(\mathbf{x}_{i, t}\) represents a vector of covariates at time \(t\) and individual \(i\), and \(\boldsymbol{\Gamma}\) the coefficient matrix linking the covariates to the latent variables.

References

Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553

Author

Ivan Jacob Agaloos Pesigan

Examples

if (FALSE) { # \dontrun{
# prepare parameters
## number of individuals
n <- 5
## time points
time <- 50
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))

pb <- PBSSMVARFixed(
  R = 10L,
  n = n,
  time = time,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  alpha = alpha,
  beta = beta,
  psi_l = psi_l,
  type = 0,
  ncores = parallel::detectCores() - 1,
  seed = 42
)
print(pb)
summary(pb)
vcov(pb)
coef(pb)
confint(pb)
} # }