Steady-State Covariance Matrix for the Linear Stochastic Differential Equation Model
Source:R/simStateSpace-lin-sde-cov.R
LinSDECov.Rd
The steady-state covariance matrix is the solution to the Sylvester equation, i.e. $$ \mathbf{A} \mathbf{X} + \mathbf{X} \mathbf{B} + \mathbf{C} = \mathbf{0} , $$ where \(\mathbf{X}\) is unknown, \(\mathbf{A} = \boldsymbol{\Phi}\), \(\mathbf{B} = \boldsymbol{\Phi}^{\prime}\), and \(\mathbf{C} = \boldsymbol{\Sigma}\).
See also
Other Simulation of State Space Models Data Functions:
LinSDE2SSM()
,
LinSDEMean()
,
SimBetaN()
,
SimPhiN()
,
SimSSMFixed()
,
SimSSMIVary()
,
SimSSMLinGrowth()
,
SimSSMLinGrowthIVary()
,
SimSSMLinSDEFixed()
,
SimSSMLinSDEIVary()
,
SimSSMOUFixed()
,
SimSSMOUIVary()
,
SimSSMVARFixed()
,
SimSSMVARIVary()
,
TestPhi()
,
TestStability()
,
TestStationarity()