Ivan Jacob Agaloos Pesigan 2025-07-22
Description
Generates nonparametric bootstrap confidence intervals (Efron & Tibshirani, 1993: https://doi.org/10.1201/9780429246593) for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm()
.
Installation
You can install the CRAN release of betaNB
with:
install.packages("betaNB")
You can install the development version of betaNB
from GitHub with:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("jeksterslab/betaNB")
Example
In this example, a multiple regression model is fitted using program quality ratings (QUALITY
) as the regressand/outcome variable and number of published articles attributed to the program faculty members (NARTIC
), percent of faculty members holding research grants (PCTGRT
), and percentage of program graduates who received support (PCTSUPP
) as regressor/predictor variables using a data set from 1982 ratings of 46 doctoral programs in psychology in the USA (National Research Council, 1982). Confidence intervals for the standardized regression coefficients are generated using the BetaNB()
function from the betaNB
package.
df <- betaNB::nas1982
Regression
Fit the regression model using the lm()
function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)
Nonparametric Bootstrap
nb <- NB(object)
Standardized Regression Slopes
BetaNB(nb, alpha = 0.05)
#> Call:
#> BetaNB(object = nb, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0714 5000 0.3521 0.6361
#> PCTGRT 0.3915 0.0760 5000 0.2377 0.5382
#> PCTSUPP 0.2632 0.0796 5000 0.1076 0.4157
Other Effect Sizes
The betaNB
package also has functions to generate nonparametric bootstrap confidence intervals for other effect sizes such as RSqNB()
for multiple correlation coefficients (R-squared and adjusted R-squared), DeltaRSqNB()
for improvement in R-squared, SCorNB()
for semipartial correlation coefficients, PCorNB()
for squared partial correlation coefficients, and DiffBetaNB()
for differences of standardized regression coefficients.
Multiple Correlation Coefficients (R-squared and adjusted R-squared)
RSqNB(nb, alpha = 0.05)
#> Call:
#> RSqNB(object = nb, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "pc"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0533 5000 0.692 0.8975
#> adj 0.7906 0.0571 5000 0.670 0.8902
Improvement in R-squared
DeltaRSqNB(nb, alpha = 0.05)
#> Call:
#> DeltaRSqNB(object = nb, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0581 5000 0.0811 0.3069
#> PCTGRT 0.1177 0.0487 5000 0.0368 0.2286
#> PCTSUPP 0.0569 0.0343 5000 0.0091 0.1405
Semipartial Correlation Coefficients
SCorNB(nb, alpha = 0.05)
#> Call:
#> SCorNB(object = nb, alpha = 0.05)
#>
#> Semipartial correlations
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.4312 0.0686 5000 0.2847 0.5540
#> PCTGRT 0.3430 0.0721 5000 0.1917 0.4782
#> PCTSUPP 0.2385 0.0715 5000 0.0953 0.3749
Squared Partial Correlation Coefficients
PCorNB(nb, alpha = 0.05)
#> Call:
#> PCorNB(object = nb, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.0969 5000 0.2873 0.6624
#> PCTGRT 0.3757 0.1079 5000 0.1632 0.5861
#> PCTSUPP 0.2254 0.1156 5000 0.0429 0.4832
Differences of Standardized Regression Coefficients
DiffBetaNB(nb, alpha = 0.05)
#> Call:
#> DiffBetaNB(object = nb, alpha = 0.05)
#>
#> Differences of standardized regression slopes
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC-PCTGRT 0.1037 0.1302 5000 -0.1472 0.3651
#> NARTIC-PCTSUPP 0.2319 0.1235 5000 -0.0055 0.4766
#> PCTGRT-PCTSUPP 0.1282 0.1274 5000 -0.1152 0.3831
Documentation
See GitHub Pages for package documentation.