Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Source:R/betaNB-p-cor-nb.R
PCorNB.Rd
Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
PCorNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
- object
Object of class
nb
, that is, the output of theNB()
function.- alpha
Numeric vector. Significance level \(\alpha\).
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(r^{2}_{p}\).
- vcov
Sampling variance-covariance matrix of \(r^{2}_{p}\).
- est
Vector of estimated \(r^{2}_{p}\).
- fun
Function used ("PCorNB").
Details
The vector of squared partial correlation coefficients (\(r^{2}_{p}\)) is estimated from bootstrap samples. Confidence intervals are generated by obtaining percentiles corresponding to \(100(1 - \alpha)\%\) from the generated sampling distribution of \(r^{2}_{p}\), where \(\alpha\) is the significance level.
See also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# PCorNB -------------------------------------------------------------------
out <- PCorNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
#> Call:
#> PCorNB(object = nb, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1048 100 0.2750 0.6471
#> PCTGRT 0.3757 0.1104 100 0.1821 0.5579
#> PCTSUPP 0.2254 0.1115 100 0.0434 0.4506
summary(out)
#> Call:
#> PCorNB(object = nb, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1048 100 0.2750 0.6471
#> PCTGRT 0.3757 0.1104 100 0.1821 0.5579
#> PCTSUPP 0.2254 0.1115 100 0.0434 0.4506
coef(out)
#> NARTIC PCTGRT PCTSUPP
#> 0.4874382 0.3757383 0.2253739
vcov(out)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.010979538 0.003168814 0.002238300
#> PCTGRT 0.003168814 0.012181158 0.001360438
#> PCTSUPP 0.002238300 0.001360438 0.012442963
confint(out, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.27502096 0.6471038
#> PCTGRT 0.18213410 0.5578763
#> PCTSUPP 0.04343062 0.4506086