Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Source:R/betaNB-beta-nb.R
BetaNB.Rd
Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
BetaNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
- object
Object of class
nb
, that is, the output of theNB()
function.- alpha
Numeric vector. Significance level \(\alpha\).
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(\boldsymbol{\hat{\beta}}\).
- jackknife
Jackknife estimates.
- vcov
Sampling variance-covariance matrix of \(\boldsymbol{\hat{\beta}}\).
- est
Vector of estimated \(\boldsymbol{\hat{\beta}}\).
- fun
Function used ("BetaNB").
Details
The vector of standardized regression coefficients (\(\boldsymbol{\hat{\beta}}\)) is estimated from bootstrap samples. Confidence intervals are generated by obtaining percentiles corresponding to \(100(1 - \alpha)\%\) from the generated sampling distribution of \(\boldsymbol{\hat{\beta}}\), where \(\alpha\) is the significance level.
See also
Other Beta Nonparametric Bootstrap Functions:
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
PCorNB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# BetaNB -------------------------------------------------------------------
out <- BetaNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
#> Call:
#> BetaNB(object = nb, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0708 100 0.3498 0.6141
#> PCTGRT 0.3915 0.0797 100 0.2440 0.5192
#> PCTSUPP 0.2632 0.0813 100 0.1033 0.4193
summary(out)
#> Call:
#> BetaNB(object = nb, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0708 100 0.3498 0.6141
#> PCTGRT 0.3915 0.0797 100 0.2440 0.5192
#> PCTSUPP 0.2632 0.0813 100 0.1033 0.4193
coef(out)
#> NARTIC PCTGRT PCTSUPP
#> 0.4951451 0.3914887 0.2632477
vcov(out)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.005012960 -0.002549951 -0.002273111
#> PCTGRT -0.002549951 0.006346647 -0.002320642
#> PCTSUPP -0.002273111 -0.002320642 0.006606168
confint(out, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.3497796 0.6141490
#> PCTGRT 0.2440254 0.5192221
#> PCTSUPP 0.1032870 0.4193349