Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Source:R/betaNB-r-sq-nb.R
RSqNB.Rd
Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
RSqNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
- object
Object of class
nb
, that is, the output of theNB()
function.- alpha
Numeric vector. Significance level \(\alpha\).
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(R^{2}\) and \(\bar{R}^{2}\).
- vcov
Sampling variance-covariance matrix of \(R^{2}\) and \(\bar{R}^{2}\).
- est
Vector of estimated \(R^{2}\) and \(\bar{R}^{2}\).
- fun
Function used ("RSqNB").
Details
R-squared (\(R^{2}\)) and adjusted R-squared (\(\bar{R}^{2}\)) is estimated from bootstrap samples. Confidence intervals are generated by obtaining percentiles corresponding to \(100(1 - \alpha)\%\) from the generated sampling distribution of \(R^{2}\) and \(\bar{R}^{2}\), where \(\alpha\) is the significance level.
See also
Other Beta Nonparametric Bootstrap Functions:
BetaNB()
,
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
PCorNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# RSqNB --------------------------------------------------------------------
out <- RSqNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
#> Call:
#> RSqNB(object = nb, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "pc"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0499 100 0.7110 0.8872
#> adj 0.7906 0.0534 100 0.6903 0.8792
summary(out)
#> Call:
#> RSqNB(object = nb, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "pc"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0499 100 0.7110 0.8872
#> adj 0.7906 0.0534 100 0.6903 0.8792
coef(out)
#> rsq adj
#> 0.8045263 0.7905638
vcov(out)
#> rsq adj
#> rsq 0.002485577 0.002663118
#> adj 0.002663118 0.002853340
confint(out, level = 0.95)
#> 2.5 % 97.5 %
#> rsq 0.7109512 0.8872404
#> adj 0.6903048 0.8791862