Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Source:R/betaMC-s-cor-mc.R
SCorMC.Rd
Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Usage
SCorMC(object, alpha = c(0.05, 0.01, 0.001))
Arguments
- object
Object of class
mc
, that is, the output of theMC()
function.- alpha
Numeric vector. Significance level \(\alpha\).
Value
Returns an object
of class betamc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(r_{s}\).
- vcov
Sampling variance-covariance matrix of \(r_{s}\).
- est
Vector of estimated \(r_{s}\).
- fun
Function used ("SCorMC").
Details
The vector of semipartial correlation coefficients (\(r_{s}\)) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to \(100(1 - \alpha)\%\) from the generated sampling distribution of \(r_{s}\), where \(\alpha\) is the significance level.
See also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
DiffBetaMC()
,
MC()
,
MCMI()
,
PCorMC()
,
RSqMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC -----------------------------------------------------------------------
mc <- MC(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
# SCorMC -------------------------------------------------------------------
out <- SCorMC(mc, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
#> Call:
#> SCorMC(object = mc, alpha = 0.05)
#>
#> Semipartial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4312 0.0903 100 0.1956 0.5623
#> PCTGRT 0.3430 0.0855 100 0.1256 0.4756
#> PCTSUPP 0.2385 0.0744 100 0.0898 0.3832
summary(out)
#> Call:
#> SCorMC(object = mc, alpha = 0.05)
#>
#> Semipartial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4312 0.0903 100 0.1956 0.5623
#> PCTGRT 0.3430 0.0855 100 0.1256 0.4756
#> PCTSUPP 0.2385 0.0744 100 0.0898 0.3832
coef(out)
#> NARTIC PCTGRT PCTSUPP
#> 0.4311525 0.3430075 0.2384789
vcov(out)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.0081518614 0.0023726959 -0.0005171414
#> PCTGRT 0.0023726959 0.0073186846 -0.0009176858
#> PCTSUPP -0.0005171414 -0.0009176858 0.0055423734
confint(out, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.19556200 0.5622509
#> PCTGRT 0.12564206 0.4755556
#> PCTSUPP 0.08983456 0.3832122