Skip to contents

Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Usage

SCorMC(object, alpha = c(0.05, 0.01, 0.001))

Arguments

object

Object of class mc, that is, the output of the MC() function.

alpha

Numeric vector. Significance level \(\alpha\).

Value

Returns an object of class betamc which is a list with the following elements:

call

Function call.

args

Function arguments.

thetahatstar

Sampling distribution of \(r_{s}\).

vcov

Sampling variance-covariance matrix of \(r_{s}\).

est

Vector of estimated \(r_{s}\).

fun

Function used ("SCorMC").

Details

The vector of semipartial correlation coefficients (\(r_{s}\)) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to \(100(1 - \alpha)\%\) from the generated sampling distribution of \(r_{s}\), where \(\alpha\) is the significance level.

See also

Other Beta Monte Carlo Functions: BetaMC(), DeltaRSqMC(), DiffBetaMC(), MC(), MCMI(), PCorMC(), RSqMC()

Author

Ivan Jacob Agaloos Pesigan

Examples

# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")

# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)

# MC -----------------------------------------------------------------------
mc <- MC(
  object,
  R = 100, # use a large value e.g., 20000L for actual research
  seed = 0508
)

# SCorMC -------------------------------------------------------------------
out <- SCorMC(mc, alpha = 0.05)

## Methods -----------------------------------------------------------------
print(out)
#> Call:
#> SCorMC(object = mc, alpha = 0.05)
#> 
#> Semipartial correlations
#> type = "hc3"
#>            est     se   R   2.5%  97.5%
#> NARTIC  0.4312 0.0874 100 0.2295 0.5623
#> PCTGRT  0.3430 0.0778 100 0.1650 0.4643
#> PCTSUPP 0.2385 0.0720 100 0.0880 0.3569
summary(out)
#> Call:
#> SCorMC(object = mc, alpha = 0.05)
#> 
#> Semipartial correlations
#> type = "hc3"
#>            est     se   R   2.5%  97.5%
#> NARTIC  0.4312 0.0874 100 0.2295 0.5623
#> PCTGRT  0.3430 0.0778 100 0.1650 0.4643
#> PCTSUPP 0.2385 0.0720 100 0.0880 0.3569
coef(out)
#>    NARTIC    PCTGRT   PCTSUPP 
#> 0.4311525 0.3430075 0.2384789 
vcov(out)
#>                NARTIC        PCTGRT       PCTSUPP
#> NARTIC   0.0076365444  0.0016690137 -0.0003859994
#> PCTGRT   0.0016690137  0.0060497385 -0.0006650079
#> PCTSUPP -0.0003859994 -0.0006650079  0.0051908878
confint(out, level = 0.95)
#>              2.5 %    97.5 %
#> NARTIC  0.22954565 0.5622638
#> PCTGRT  0.16503602 0.4642695
#> PCTSUPP 0.08800891 0.3569279