Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Source:R/betaMC-r-sq-mc.R
RSqMC.Rd
Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Usage
RSqMC(object, alpha = c(0.05, 0.01, 0.001))
Arguments
- object
Object of class
mc
, that is, the output of theMC()
function.- alpha
Numeric vector. Significance level \(\alpha\).
Value
Returns an object
of class betamc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(R^{2}\) and \(\bar{R}^{2}\).
- vcov
Sampling variance-covariance matrix of \(R^{2}\) and \(\bar{R}^{2}\).
- est
Vector of estimated \(R^{2}\) and \(\bar{R}^{2}\).
- fun
Function used ("RSqMC").
Details
R-squared (\(R^{2}\)) and adjusted R-squared (\(\bar{R}^{2}\)) are derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to \(100(1 - \alpha)\%\) from the generated sampling distribution of \(R^{2}\) and \(\bar{R}^{2}\), where \(\alpha\) is the significance level.
See also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
DiffBetaMC()
,
MC()
,
MCMI()
,
PCorMC()
,
SCorMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC -----------------------------------------------------------------------
mc <- MC(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
# RSqMC --------------------------------------------------------------------
out <- RSqMC(mc, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
#> Call:
#> RSqMC(object = mc, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0602 100 0.6520 0.8797
#> adj 0.7906 0.0645 100 0.6272 0.8711
summary(out)
#> Call:
#> RSqMC(object = mc, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0602 100 0.6520 0.8797
#> adj 0.7906 0.0645 100 0.6272 0.8711
coef(out)
#> rsq adj
#> 0.8045263 0.7905638
vcov(out)
#> rsq adj
#> rsq 0.003627964 0.003887104
#> adj 0.003887104 0.004164754
confint(out, level = 0.95)
#> 2.5 % 97.5 %
#> rsq 0.6520133 0.8796603
#> adj 0.6271572 0.8710646