Ivan Jacob Agaloos Pesigan 2024-10-22
Description
Generates Monte Carlo confidence intervals for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm()
. betaMC
combines ideas from Monte Carlo confidence intervals for the indirect effect (Pesigan and Cheung, 2023: http://doi.org/10.3758/s13428-023-02114-4) and the sampling covariance matrix of regression coefficients (Dudgeon, 2017: http://doi.org/10.1007/s11336-017-9563-z) to generate confidence intervals effect sizes in regression.
Installation
You can install the CRAN release of betaMC
with:
install.packages("betaMC")
You can install the development version of betaMC
from GitHub with:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("jeksterslab/betaMC")
Example
In this example, a multiple regression model is fitted using program quality ratings (QUALITY
) as the regressand/outcome variable and number of published articles attributed to the program faculty members (NARTIC
), percent of faculty members holding research grants (PCTGRT
), and percentage of program graduates who received support (PCTSUPP
) as regressor/predictor variables using a data set from 1982 ratings of 46 doctoral programs in psychology in the USA (National Research Council, 1982). Confidence intervals for the standardized regression coefficients are generated using the BetaMC()
function from the betaMC
package.
df <- betaMC::nas1982
Regression
Fit the regression model using the lm()
function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)
Monte Carlo Sampling Distribution of Parameters
Normal-Theory Approach
mvn <- MC(object, type = "mvn")
Asymptotic distribution-free Approach
adf <- MC(object, type = "adf")
Heteroskedasticity Consistent Approach (HC3)
hc3 <- MC(object, type = "hc3")
Standardized Regression Slopes
Normal-Theory Approach
BetaMC(mvn, alpha = 0.05)
#> Call:
#> BetaMC(object = mvn, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "mvn"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0758 20000 0.3402 0.6361
#> PCTGRT 0.3915 0.0767 20000 0.2368 0.5383
#> PCTSUPP 0.2632 0.0746 20000 0.1177 0.4094
Asymptotic distribution-free Approach
BetaMC(adf, alpha = 0.05)
#> Call:
#> BetaMC(object = adf, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "adf"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0679 20000 0.3513 0.6170
#> PCTGRT 0.3915 0.0712 20000 0.2418 0.5228
#> PCTSUPP 0.2632 0.0769 20000 0.1071 0.4090
Heteroskedasticity Consistent Approach (HC3)
BetaMC(hc3, alpha = 0.05)
#> Call:
#> BetaMC(object = hc3, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0800 20000 0.3227 0.6348
#> PCTGRT 0.3915 0.0826 20000 0.2192 0.5439
#> PCTSUPP 0.2632 0.0862 20000 0.0867 0.4267
Other Effect Sizes
The betaMC
package also has functions to generate Monte Carlo confidence intervals for other effect sizes such as RSqMC()
for multiple correlation coefficients (R-squared and adjusted R-squared), DeltaRSqMC()
for improvement in R-squared, SCorMC()
for semipartial correlation coefficients, PCorMC()
for squared partial correlation coefficients, and DiffBetaMC()
for differences of standardized regression coefficients.
Multiple Correlation Coefficients (R-squared and adjusted R-squared)
RSqMC(hc3, alpha = 0.05)
#> Call:
#> RSqMC(object = hc3, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0622 20000 0.6430 0.8876
#> adj 0.7906 0.0667 20000 0.6175 0.8796
Improvement in R-squared
DeltaRSqMC(hc3, alpha = 0.05)
#> Call:
#> DeltaRSqMC(object = hc3, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0691 20000 0.0498 0.3231
#> PCTGRT 0.1177 0.0549 20000 0.0250 0.2392
#> PCTSUPP 0.0569 0.0378 20000 0.0056 0.1514
Semipartial Correlation Coefficients
SCorMC(hc3, alpha = 0.05)
#> Call:
#> SCorMC(object = hc3, alpha = 0.05)
#>
#> Semipartial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4312 0.0871 20000 0.2231 0.5684
#> PCTGRT 0.3430 0.0834 20000 0.1581 0.4890
#> PCTSUPP 0.2385 0.0788 20000 0.0751 0.3891
Squared Partial Correlation Coefficients
PCorMC(hc3, alpha = 0.05)
#> Call:
#> PCorMC(object = hc3, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1197 20000 0.1754 0.6491
#> PCTGRT 0.3757 0.1154 20000 0.1058 0.5558
#> PCTSUPP 0.2254 0.1134 20000 0.0234 0.4611
Differences of Standardized Regression Coefficients
DiffBetaMC(hc3, alpha = 0.05)
#> Call:
#> DiffBetaMC(object = hc3, alpha = 0.05)
#>
#> Differences of standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC-PCTGRT 0.1037 0.1428 20000 -0.1856 0.3771
#> NARTIC-PCTSUPP 0.2319 0.1336 20000 -0.0382 0.4868
#> PCTGRT-PCTSUPP 0.1282 0.1383 20000 -0.1483 0.3938
Documentation
See GitHub Pages for package documentation.