Ivan Jacob Agaloos Pesigan 2025-10-19
Description
Generates Monte Carlo confidence intervals for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm(). betaMC combines ideas from Monte Carlo confidence intervals for the indirect effect (Pesigan and Cheung, 2024: http://doi.org/10.3758/s13428-023-02114-4) and the sampling covariance matrix of regression coefficients (Dudgeon, 2017: http://doi.org/10.1007/s11336-017-9563-z) to generate confidence intervals effect sizes in regression.
Installation
You can install the CRAN release of betaMC with:
install.packages("betaMC")You can install the development version of betaMC from GitHub with:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("jeksterslab/betaMC")Example
In this example, a multiple regression model is fitted using program quality ratings (QUALITY) as the regressand/outcome variable and number of published articles attributed to the program faculty members (NARTIC), percent of faculty members holding research grants (PCTGRT), and percentage of program graduates who received support (PCTSUPP) as regressor/predictor variables using a data set from 1982 ratings of 46 doctoral programs in psychology in the USA (National Research Council, 1982). Confidence intervals for the standardized regression coefficients are generated using the BetaMC() function from the betaMC package.
df <- betaMC::nas1982Regression
Fit the regression model using the lm() function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)Monte Carlo Sampling Distribution of Parameters
Normal-Theory Approach
mvn <- MC(object, type = "mvn")Asymptotic distribution-free Approach
adf <- MC(object, type = "adf")Heteroskedasticity Consistent Approach (HC3)
hc3 <- MC(object, type = "hc3")Standardized Regression Slopes
Normal-Theory Approach
BetaMC(mvn, alpha = 0.05)
#> Call:
#> BetaMC(object = mvn, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "mvn"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0759 20000 0.3385 0.6349
#> PCTGRT 0.3915 0.0767 20000 0.2380 0.5390
#> PCTSUPP 0.2632 0.0745 20000 0.1211 0.4127Asymptotic distribution-free Approach
BetaMC(adf, alpha = 0.05)
#> Call:
#> BetaMC(object = adf, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "adf"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0677 20000 0.3509 0.6169
#> PCTGRT 0.3915 0.0708 20000 0.2438 0.5221
#> PCTSUPP 0.2632 0.0765 20000 0.1061 0.4084Heteroskedasticity Consistent Approach (HC3)
BetaMC(hc3, alpha = 0.05)
#> Call:
#> BetaMC(object = hc3, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0798 20000 0.3227 0.6352
#> PCTGRT 0.3915 0.0818 20000 0.2204 0.5398
#> PCTSUPP 0.2632 0.0855 20000 0.0900 0.4260Other Effect Sizes
The betaMC package also has functions to generate Monte Carlo confidence intervals for other effect sizes such as RSqMC() for multiple correlation coefficients (R-squared and adjusted R-squared), DeltaRSqMC() for improvement in R-squared, SCorMC() for semipartial correlation coefficients, PCorMC() for squared partial correlation coefficients, and DiffBetaMC() for differences of standardized regression coefficients.
Multiple Correlation Coefficients (R-squared and adjusted R-squared)
RSqMC(hc3, alpha = 0.05)
#> Call:
#> RSqMC(object = hc3, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0620 20000 0.6447 0.8873
#> adj 0.7906 0.0665 20000 0.6193 0.8793Improvement in R-squared
DeltaRSqMC(hc3, alpha = 0.05)
#> Call:
#> DeltaRSqMC(object = hc3, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0689 20000 0.0481 0.3206
#> PCTGRT 0.1177 0.0541 20000 0.0248 0.2351
#> PCTSUPP 0.0569 0.0375 20000 0.0063 0.1503Semipartial Correlation Coefficients
SCorMC(hc3, alpha = 0.05)
#> Call:
#> SCorMC(object = hc3, alpha = 0.05)
#>
#> Semipartial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4312 0.0871 20000 0.2193 0.5662
#> PCTGRT 0.3430 0.0827 20000 0.1576 0.4848
#> PCTSUPP 0.2385 0.0782 20000 0.0792 0.3877Squared Partial Correlation Coefficients
PCorMC(hc3, alpha = 0.05)
#> Call:
#> PCorMC(object = hc3, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1192 20000 0.1739 0.6469
#> PCTGRT 0.3757 0.1148 20000 0.1065 0.5500
#> PCTSUPP 0.2254 0.1128 20000 0.0267 0.4553Differences of Standardized Regression Coefficients
DiffBetaMC(hc3, alpha = 0.05)
#> Call:
#> DiffBetaMC(object = hc3, alpha = 0.05)
#>
#> Differences of standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC-PCTGRT 0.1037 0.1421 20000 -0.1778 0.3778
#> NARTIC-PCTSUPP 0.2319 0.1333 20000 -0.0387 0.4841
#> PCTGRT-PCTSUPP 0.1282 0.1364 20000 -0.1447 0.3856Documentation
See GitHub Pages for package documentation.