Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Source:R/betaMC-p-cor-mc.R
PCorMC.Rd
Estimate Squared Partial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Usage
PCorMC(object, alpha = c(0.05, 0.01, 0.001))
Arguments
- object
Object of class
mc
, that is, the output of theMC()
function.- alpha
Numeric vector. Significance level \(\alpha\).
Value
Returns an object
of class betamc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(r^{2}_{p}\).
- vcov
Sampling variance-covariance matrix of \(r^{2}_{p}\).
- est
Vector of estimated \(r^{2}_{p}\).
- fun
Function used ("PCorMC").
Details
The vector of squared partial correlation coefficients (\(r^{2}_{p}\)) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to \(100(1 - \alpha)\%\) from the generated sampling distribution of \(r^{2}_{p}\), where \(\alpha\) is the significance level.
See also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
DiffBetaMC()
,
MC()
,
MCMI()
,
RSqMC()
,
SCorMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC -----------------------------------------------------------------------
mc <- MC(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
# PCorMC -------------------------------------------------------------------
out <- PCorMC(mc, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
#> Call:
#> PCorMC(object = mc, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1228 100 0.1690 0.6040
#> PCTGRT 0.3757 0.1085 100 0.1102 0.5049
#> PCTSUPP 0.2254 0.1035 100 0.0274 0.4129
summary(out)
#> Call:
#> PCorMC(object = mc, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1228 100 0.1690 0.6040
#> PCTGRT 0.3757 0.1085 100 0.1102 0.5049
#> PCTSUPP 0.2254 0.1035 100 0.0274 0.4129
coef(out)
#> NARTIC PCTGRT PCTSUPP
#> 0.4874382 0.3757383 0.2253739
vcov(out)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.015070964 0.005353598 0.002240937
#> PCTGRT 0.005353598 0.011763713 0.001066046
#> PCTSUPP 0.002240937 0.001066046 0.010704482
confint(out, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.1689777 0.6039797
#> PCTGRT 0.1102259 0.5049136
#> PCTSUPP 0.0273768 0.4128501