Generate the Sampling Distribution of Regression Parameters Using the Monte Carlo Method for Data with Missing Values
Source:R/betaMC-mc-mi.R
MCMI.Rd
Generate the Sampling Distribution of Regression Parameters Using the Monte Carlo Method for Data with Missing Values
Usage
MCMI(
object,
mi,
R = 20000L,
type = "hc3",
g1 = 1,
g2 = 1.5,
k = 0.7,
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
fixed_x = FALSE,
seed = NULL
)
Arguments
- object
Object of class
lm
.- mi
Object of class
mids
(output ofmice::mice()
), object of classamelia
(output ofAmelia::amelia()
), or a list of multiply imputed data sets.- R
Positive integer. Number of Monte Carlo replications.
- type
Character string. Sampling covariance matrix type. Possible values are
"mvn"
,"adf"
,"hc0"
,"hc1"
,"hc2"
,"hc3"
,"hc4"
,"hc4m"
, and"hc5"
.type = "mvn"
uses the normal-theory sampling covariance matrix.type = "adf"
uses the asymptotic distribution-free sampling covariance matrix.type = "hc0"
through"hc5"
uses different versions of heteroskedasticity-consistent sampling covariance matrix.- g1
Numeric.
g1
value fortype = "hc4m"
.- g2
Numeric.
g2
value fortype = "hc4m"
.- k
Numeric. Constant for
type = "hc5"
- decomposition
Character string. Matrix decomposition of the sampling variance-covariance matrix for the data generation. If
decomposition = "chol"
, use Cholesky decomposition. Ifdecomposition = "eigen"
, use eigenvalue decomposition. Ifdecomposition = "svd"
, use singular value decomposition.- pd
Logical. If
pd = TRUE
, check if the sampling variance-covariance matrix is positive definite usingtol
.- tol
Numeric. Tolerance used for
pd
.- fixed_x
Logical. If
fixed_x = TRUE
, treat the regressors as fixed. Iffixed_x = FALSE
, treat the regressors as random.- seed
Integer. Seed number for reproducibility.
Value
Returns an object
of class mc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- scale
Sampling variance-covariance matrix of parameter estimates.
- location
Parameter estimates.
- thetahatstar
Sampling distribution of parameter estimates.
- fun
Function used ("MCMI").
Details
Multiple imputation
is used to deal with missing values in a data set.
The vector of parameter estimates
and the corresponding sampling covariance matrix
are estimated for each of the imputed data sets.
Results are combined to arrive at the pooled vector of parameter estimates
and the corresponding sampling covariance matrix.
The pooled estimates are then used to generate the sampling distribution
of regression parameters.
See MC()
for more details on the Monte Carlo method.
References
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99-128. doi:10.1207/s15327906mbr3901_4
Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods. doi:10.3758/s13428-023-02114-4
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. doi:10.1080/19312458.2012.679848
See also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
DiffBetaMC()
,
MC()
,
PCorMC()
,
RSqMC()
,
SCorMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
nas1982_missing <- mice::ampute(nas1982)$amp # data set with missing values
# Multiple Imputation
mi <- mice::mice(nas1982_missing, m = 5, seed = 42, print = FALSE)
# Fit Model in lm ----------------------------------------------------------
## Note that this does not deal with missing values.
## The fitted model (`object`) is updated with each imputed data
## within the `MCMI()` function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982_missing)
# Monte Carlo --------------------------------------------------------------
mc <- MCMI(
object,
mi = mi,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
mc
#> Call:
#> MCMI(object = object, mi = mi, R = 100, seed = 508)
#> The first set of simulated parameter estimates
#> and model-implied covariance matrix.
#>
#> $coef
#> [1] 0.11388732 0.13252144 0.08302584
#>
#> $sigmasq
#> [1] 23.12027
#>
#> $vechsigmacapx
#> [1] 3949.3813 365.0281 450.0908 363.3795 178.8778 590.5260
#>
#> $sigmacapx
#> [,1] [,2] [,3]
#> [1,] 3949.3813 365.0281 450.0908
#> [2,] 365.0281 363.3795 178.8778
#> [3,] 450.0908 178.8778 590.5260
#>
#> $sigmaysq
#> [1] 108.2637
#>
#> $sigmayx
#> [1] 535.5277 104.5791 123.9937
#>
#> $sigmacap
#> [,1] [,2] [,3] [,4]
#> [1,] 108.2637 535.5277 104.5791 123.9937
#> [2,] 535.5277 3949.3813 365.0281 450.0908
#> [3,] 104.5791 365.0281 363.3795 178.8778
#> [4,] 123.9937 450.0908 178.8778 590.5260
#>
#> $pd
#> [1] TRUE
#>
# The `mc` object can be passed as the first argument
# to the following functions
# - BetaMC
# - DeltaRSqMC
# - DiffBetaMC
# - PCorMC
# - RSqMC
# - SCorMC