Ivan Jacob Agaloos Pesigan 2024-10-01
Description
Generates Monte Carlo confidence intervals for standardized regression coefficients (beta) and other effect sizes, including multiple correlation, semipartial correlations, improvement in R-squared, squared partial correlations, and differences in standardized regression coefficients, for models fitted by lm()
. betaMC
combines ideas from Monte Carlo confidence intervals for the indirect effect (Pesigan and Cheung, 2023: http://doi.org/10.3758/s13428-023-02114-4) and the sampling covariance matrix of regression coefficients (Dudgeon, 2017: http://doi.org/10.1007/s11336-017-9563-z) to generate confidence intervals effect sizes in regression.
Installation
You can install the CRAN release of betaMC
with:
install.packages("betaMC")
You can install the development version of betaMC
from GitHub with:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("jeksterslab/betaMC")
Example
In this example, a multiple regression model is fitted using program quality ratings (QUALITY
) as the regressand/outcome variable and number of published articles attributed to the program faculty members (NARTIC
), percent of faculty members holding research grants (PCTGRT
), and percentage of program graduates who received support (PCTSUPP
) as regressor/predictor variables using a data set from 1982 ratings of 46 doctoral programs in psychology in the USA (National Research Council, 1982). Confidence intervals for the standardized regression coefficients are generated using the BetaMC()
function from the betaMC
package.
df <- betaMC::nas1982
Regression
Fit the regression model using the lm()
function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)
Monte Carlo Sampling Distribution of Parameters
Normal-Theory Approach
mvn <- MC(object, type = "mvn")
Asymptotic distribution-free Approach
adf <- MC(object, type = "adf")
Heteroskedasticity Consistent Approach (HC3)
hc3 <- MC(object, type = "hc3")
Standardized Regression Slopes
Normal-Theory Approach
BetaMC(mvn, alpha = 0.05)
#> Call:
#> BetaMC(object = mvn, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "mvn"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0760 20000 0.3389 0.6335
#> PCTGRT 0.3915 0.0772 20000 0.2362 0.5400
#> PCTSUPP 0.2632 0.0746 20000 0.1183 0.4113
Asymptotic distribution-free Approach
BetaMC(adf, alpha = 0.05)
#> Call:
#> BetaMC(object = adf, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "adf"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0673 20000 0.3519 0.6160
#> PCTGRT 0.3915 0.0703 20000 0.2436 0.5200
#> PCTSUPP 0.2632 0.0768 20000 0.1062 0.4085
Heteroskedasticity Consistent Approach (HC3)
BetaMC(hc3, alpha = 0.05)
#> Call:
#> BetaMC(object = hc3, alpha = 0.05)
#>
#> Standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4951 0.0798 20000 0.3220 0.6350
#> PCTGRT 0.3915 0.0829 20000 0.2189 0.5413
#> PCTSUPP 0.2632 0.0863 20000 0.0871 0.4260
Other Effect Sizes
The betaMC
package also has functions to generate Monte Carlo confidence intervals for other effect sizes such as RSqMC()
for multiple correlation coefficients (R-squared and adjusted R-squared), DeltaRSqMC()
for improvement in R-squared, SCorMC()
for semipartial correlation coefficients, PCorMC()
for squared partial correlation coefficients, and DiffBetaMC()
for differences of standardized regression coefficients.
Multiple Correlation Coefficients (R-squared and adjusted R-squared)
RSqMC(hc3, alpha = 0.05)
#> Call:
#> RSqMC(object = hc3, alpha = 0.05)
#>
#> R-squared and adjusted R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> rsq 0.8045 0.0619 20000 0.6483 0.8871
#> adj 0.7906 0.0663 20000 0.6232 0.8790
Improvement in R-squared
DeltaRSqMC(hc3, alpha = 0.05)
#> Call:
#> DeltaRSqMC(object = hc3, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0692 20000 0.0506 0.3230
#> PCTGRT 0.1177 0.0548 20000 0.0253 0.2363
#> PCTSUPP 0.0569 0.0379 20000 0.0058 0.1515
Semipartial Correlation Coefficients
SCorMC(hc3, alpha = 0.05)
#> Call:
#> SCorMC(object = hc3, alpha = 0.05)
#>
#> Semipartial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4312 0.0867 20000 0.2250 0.5683
#> PCTGRT 0.3430 0.0834 20000 0.1592 0.4861
#> PCTSUPP 0.2385 0.0791 20000 0.0761 0.3892
Squared Partial Correlation Coefficients
PCorMC(hc3, alpha = 0.05)
#> Call:
#> PCorMC(object = hc3, alpha = 0.05)
#>
#> Squared partial correlations
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC 0.4874 0.1189 20000 0.1810 0.6492
#> PCTGRT 0.3757 0.1154 20000 0.1057 0.5564
#> PCTSUPP 0.2254 0.1135 20000 0.0239 0.4571
Differences of Standardized Regression Coefficients
DiffBetaMC(hc3, alpha = 0.05)
#> Call:
#> DiffBetaMC(object = hc3, alpha = 0.05)
#>
#> Differences of standardized regression slopes
#> type = "hc3"
#> est se R 2.5% 97.5%
#> NARTIC-PCTGRT 0.1037 0.1433 20000 -0.1794 0.3823
#> NARTIC-PCTSUPP 0.2319 0.1329 20000 -0.0368 0.4806
#> PCTGRT-PCTSUPP 0.1282 0.1387 20000 -0.1510 0.3942
Documentation
See GitHub Pages for package documentation.