Estimate Multiple Correlation Coefficients (R-squared and adjusted R-squared) and the Corresponding Sampling Covariance Matrix
Source:R/betaSandwich-r-sq-beta-sandwich.R
RSqBetaSandwich.Rd
Estimate Multiple Correlation Coefficients (R-squared and adjusted R-squared) and the Corresponding Sampling Covariance Matrix
Usage
RSqBetaSandwich(object, alpha = c(0.05, 0.01, 0.001))
Value
Returns an object of class rsqbetasandwich
which is a list with the following elements:
- call
Function call.
- fit
The argument
object
.- args
Function arguments.
- vcov
Sampling covariance matrix of multiple correlation coefficients (R-squared and adjusted R-squared).
- est
Vector of multiple correlation coefficients (R-squared and adjusted R-squared).
See also
Other Beta Sandwich Functions:
BetaADF()
,
BetaHC()
,
BetaN()
,
DiffBetaSandwich()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaHC(object)
rsq <- RSqBetaSandwich(std)
# Methods -------------------------------------------------------
print(rsq)
#> Call:
#> RSqBetaSandwich(object = std)
#>
#> Multiple correlation with HC3 standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> rsq 0.8045 3.9483 0.2038 42 0.8395 -13.1636 -9.8483 -7.1635 8.7725 11.4573
#> adj 0.7906 4.2303 0.1869 42 0.8527 -14.1753 -10.6231 -7.7466 9.3277 12.2043
#> 99.95%
#> rsq 14.7726
#> adj 15.7564
summary(rsq)
#> Call:
#> RSqBetaSandwich(object = std)
#>
#> Multiple correlation with HC3 standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> rsq 0.8045 3.9483 0.2038 42 0.8395 -13.1636 -9.8483 -7.1635 8.7725 11.4573
#> adj 0.7906 4.2303 0.1869 42 0.8527 -14.1753 -10.6231 -7.7466 9.3277 12.2043
#> 99.95%
#> rsq 14.7726
#> adj 15.7564
coef(rsq)
#> rsq.rsq adj.adj
#> 0.8045263 0.7905638
vcov(rsq)
#> rsq adj
#> rsq 15.58911 16.70262
#> adj 16.70262 17.89567
confint(rsq, level = 0.95)
#> 2.5 % 97.5 %
#> rsq -7.163476 8.772529
#> adj -7.746582 9.327709