Estimate Multiple Correlation Coefficients (R-squared and adjusted R-squared) and the Corresponding Sampling Covariance Matrix
Source:R/betaSandwich-r-sq-beta-sandwich.R
      RSqBetaSandwich.RdEstimate Multiple Correlation Coefficients (R-squared and adjusted R-squared) and the Corresponding Sampling Covariance Matrix
Usage
RSqBetaSandwich(object, alpha = c(0.05, 0.01, 0.001))Value
Returns an object of class rsqbetasandwich
which is a list with the following elements:
- call
 Function call.
- fit
 The argument
object.- args
 Function arguments.
- vcov
 Sampling covariance matrix of multiple correlation coefficients (R-squared and adjusted R-squared).
- est
 Vector of multiple correlation coefficients (R-squared and adjusted R-squared).
See also
Other Beta Sandwich Functions:
BetaADF(),
BetaHC(),
BetaN(),
DiffBetaSandwich()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaHC(object)
rsq <- RSqBetaSandwich(std)
# Methods -------------------------------------------------------
print(rsq)
#> Call:
#> RSqBetaSandwich(object = std)
#> 
#> Multiple correlation with HC3 standard errors:
#>        est     se       t df p  0.05% 0.5%   2.5%  97.5%  99.5% 99.95%
#> rsq 0.8045 0.0313 25.6916 42 0 0.6937 0.72 0.7413 0.8677 0.8890 0.9153
#> adj 0.7906 0.0336 23.5627 42 0 0.6719 0.70 0.7229 0.8583 0.8811 0.9093
summary(rsq)
#> Call:
#> RSqBetaSandwich(object = std)
#> 
#> Multiple correlation with HC3 standard errors:
#>        est     se       t df p  0.05% 0.5%   2.5%  97.5%  99.5% 99.95%
#> rsq 0.8045 0.0313 25.6916 42 0 0.6937 0.72 0.7413 0.8677 0.8890 0.9153
#> adj 0.7906 0.0336 23.5627 42 0 0.6719 0.70 0.7229 0.8583 0.8811 0.9093
coef(rsq)
#>   rsq.rsq   adj.adj 
#> 0.8045263 0.7905638 
vcov(rsq)
#>              rsq         adj
#> rsq 0.0009806163 0.001050660
#> adj 0.0010506603 0.001125707
confint(rsq, level = 0.95)
#>         2.5 %    97.5 %
#> rsq 0.7413304 0.8677221
#> adj 0.7228540 0.8582736