Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix Assuming Multivariate Normality
Source:R/betaSandwich-beta-mvn.R
BetaN.Rd
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix Assuming Multivariate Normality
Usage
BetaN(object, alpha = c(0.05, 0.01, 0.001))
Value
Returns an object
of class betasandwich
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- gamma_n
Asymptotic covariance matrix of the sample covariance matrix assuming multivariate normality.
- gamma_hc
Asymptotic covariance matrix HC correction.
- gamma
Asymptotic covariance matrix of the sample covariance matrix.
- acov
Asymptotic covariance matrix of the standardized slopes.
- vcov
Sampling covariance matrix of the standardized slopes.
- est
Vector of standardized slopes.
Details
Note that while the calculation in BetaN()
is different from betaDelta::BetaDelta()
with type = "mvn"
,
the results are numerically equivalent.
BetaN()
assumes multivariate normality.
BetaHC()
is recommended in most situations.
References
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
See also
Other Beta Sandwich Functions:
BetaADF()
,
BetaHC()
,
DiffBetaSandwich()
,
RSqBetaSandwich()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaN(object)
# Methods -------------------------------------------------------
print(std)
#> Call:
#> BetaN(object = object)
#>
#> Standardized regression slopes with MVN standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0759 6.5272 42 0.000 0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT 0.3915 0.0770 5.0824 42 0.000 0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#> 99.95%
#> NARTIC 0.7635
#> PCTGRT 0.6640
#> PCTSUPP 0.5276
summary(std)
#> Call:
#> BetaN(object = object)
#>
#> Standardized regression slopes with MVN standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0759 6.5272 42 0.000 0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT 0.3915 0.0770 5.0824 42 0.000 0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#> 99.95%
#> NARTIC 0.7635
#> PCTGRT 0.6640
#> PCTSUPP 0.5276
coef(std)
#> NARTIC PCTGRT PCTSUPP
#> 0.4951451 0.3914887 0.2632477
vcov(std)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.005754524 -0.003360334 -0.002166127
#> PCTGRT -0.003360334 0.005933462 -0.001769723
#> PCTSUPP -0.002166127 -0.001769723 0.005585256
confint(std, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.3420563 0.6482339
#> PCTGRT 0.2360380 0.5469395
#> PCTSUPP 0.1124272 0.4140682