Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix Assuming Multivariate Normality
Source:R/betaSandwich-beta-mvn.R
      BetaN.RdEstimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix Assuming Multivariate Normality
Usage
BetaN(object, alpha = c(0.05, 0.01, 0.001))Value
Returns an object
of class betasandwich which is a list with the following elements:
- call
- Function call. 
- args
- Function arguments. 
- lm_process
- Processed - lmobject.
- gamma_n
- Asymptotic covariance matrix of the sample covariance matrix assuming multivariate normality. 
- gamma_hc
- Asymptotic covariance matrix HC correction. 
- gamma
- Asymptotic covariance matrix of the sample covariance matrix. 
- acov
- Asymptotic covariance matrix of the standardized slopes. 
- vcov
- Sampling covariance matrix of the standardized slopes. 
- est
- Vector of standardized slopes. 
Details
Note that while the calculation in BetaN()
is different from betaDelta::BetaDelta() with type = "mvn",
the results are numerically equivalent.
BetaN() assumes multivariate normality.
BetaHC() is recommended in most situations.
References
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
See also
Other Beta Sandwich Functions:
BetaADF(),
BetaHC(),
DiffBetaSandwich(),
RSqBetaSandwich()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaN(object)
# Methods -------------------------------------------------------
print(std)
#> Call:
#> BetaN(object = object)
#> 
#> Standardized regression slopes with MVN standard errors:
#>            est     se      t df     p   0.05%   0.5%   2.5%  97.5%  99.5%
#> NARTIC  0.4951 0.0759 6.5272 42 0.000  0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT  0.3915 0.0770 5.0824 42 0.000  0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#>         99.95%
#> NARTIC  0.7635
#> PCTGRT  0.6640
#> PCTSUPP 0.5276
summary(std)
#> Call:
#> BetaN(object = object)
#> 
#> Standardized regression slopes with MVN standard errors:
#>            est     se      t df     p   0.05%   0.5%   2.5%  97.5%  99.5%
#> NARTIC  0.4951 0.0759 6.5272 42 0.000  0.2268 0.2905 0.3421 0.6482 0.6998
#> PCTGRT  0.3915 0.0770 5.0824 42 0.000  0.1190 0.1837 0.2360 0.5469 0.5993
#> PCTSUPP 0.2632 0.0747 3.5224 42 0.001 -0.0011 0.0616 0.1124 0.4141 0.4649
#>         99.95%
#> NARTIC  0.7635
#> PCTGRT  0.6640
#> PCTSUPP 0.5276
coef(std)
#>    NARTIC    PCTGRT   PCTSUPP 
#> 0.4951451 0.3914887 0.2632477 
vcov(std)
#>               NARTIC       PCTGRT      PCTSUPP
#> NARTIC   0.005754524 -0.003360334 -0.002166127
#> PCTGRT  -0.003360334  0.005933462 -0.001769723
#> PCTSUPP -0.002166127 -0.001769723  0.005585256
confint(std, level = 0.95)
#>             2.5 %    97.5 %
#> NARTIC  0.3420563 0.6482339
#> PCTGRT  0.2360380 0.5469395
#> PCTSUPP 0.1124272 0.4140682