Estimate Standardized Regression Coefficients and the Corresponding Robust Sampling Covariance Matrix Using the Heteroskedasticity Consistent Approach
Source:R/betaSandwich-beta-hc.R
BetaHC.Rd
Estimate Standardized Regression Coefficients and the Corresponding Robust Sampling Covariance Matrix Using the Heteroskedasticity Consistent Approach
Usage
BetaHC(
object,
type = "hc3",
alpha = c(0.05, 0.01, 0.001),
g1 = 1,
g2 = 1.5,
k = 0.7
)
Arguments
- object
Object of class
lm
.- type
Character string. Correction type. Possible values are
"hc0"
,"hc1"
,"hc2"
,"hc3"
,"hc4"
,"hc4m"
, and"hc5"
.- alpha
Numeric vector. Significance level \(\alpha\).
- g1
Numeric.
g1
value fortype = "hc4m"
.- g2
Numeric.
g2
value fortype = "hc4m"
.- k
Numeric. Constant
k
fortype = "hc5"
\(0 \leq k \leq 1\).
Value
Returns an object
of class betasandwich
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- gamma_n
Asymptotic covariance matrix of the sample covariance matrix assuming multivariate normality.
- gamma_hc
Asymptotic covariance matrix HC correction.
- gamma
Asymptotic covariance matrix of the sample covariance matrix.
- acov
Asymptotic covariance matrix of the standardized slopes.
- vcov
Sampling covariance matrix of the standardized slopes.
- est
Vector of standardized slopes.
References
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
See also
Other Beta Sandwich Functions:
BetaADF()
,
BetaN()
,
DiffBetaSandwich()
,
RSqBetaSandwich()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaHC(object)
# Methods -------------------------------------------------------
print(std)
#> Call:
#> BetaHC(object = object)
#>
#> Standardized regression slopes with HC3 standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0786 6.3025 42 0.0000 0.2172 0.2832 0.3366 0.6537 0.7071
#> PCTGRT 0.3915 0.0818 4.7831 42 0.0000 0.1019 0.1707 0.2263 0.5567 0.6123
#> PCTSUPP 0.2632 0.0855 3.0786 42 0.0037 -0.0393 0.0325 0.0907 0.4358 0.4940
#> 99.95%
#> NARTIC 0.7731
#> PCTGRT 0.6810
#> PCTSUPP 0.5658
summary(std)
#> Call:
#> BetaHC(object = object)
#>
#> Standardized regression slopes with HC3 standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0786 6.3025 42 0.0000 0.2172 0.2832 0.3366 0.6537 0.7071
#> PCTGRT 0.3915 0.0818 4.7831 42 0.0000 0.1019 0.1707 0.2263 0.5567 0.6123
#> PCTSUPP 0.2632 0.0855 3.0786 42 0.0037 -0.0393 0.0325 0.0907 0.4358 0.4940
#> 99.95%
#> NARTIC 0.7731
#> PCTGRT 0.6810
#> PCTSUPP 0.5658
coef(std)
#> NARTIC PCTGRT PCTSUPP
#> 0.4951451 0.3914887 0.2632477
vcov(std)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.006172168 -0.003602529 -0.001943469
#> PCTGRT -0.003602529 0.006699155 -0.002443584
#> PCTSUPP -0.001943469 -0.002443584 0.007311625
confint(std, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.33659828 0.6536920
#> PCTGRT 0.22631203 0.5566654
#> PCTSUPP 0.09068548 0.4358099