Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix Using the Asymptotic Distribution-Free Approach
Source:R/betaSandwich-beta-adf.R
BetaADF.Rd
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix Using the Asymptotic Distribution-Free Approach
Usage
BetaADF(object, alpha = c(0.05, 0.01, 0.001))
Value
Returns an object
of class betasandwich
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- gamma_n
Asymptotic covariance matrix of the sample covariance matrix assuming multivariate normality.
- gamma_hc
Asymptotic covariance matrix HC correction.
- gamma
Asymptotic covariance matrix of the sample covariance matrix.
- acov
Asymptotic covariance matrix of the standardized slopes.
- vcov
Sampling covariance matrix of the standardized slopes.
- est
Vector of standardized slopes.
Details
Note that while the calculation in BetaADF()
is different from betaDelta::BetaDelta()
with type = "adf"
,
the results are numerically equivalent.
BetaADF()
is appropriate when sample sizes are moderate to large
(n > 250
).
BetaHC()
is recommended in most situations.
References
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37(1), 62–83. doi:10.1111/j.2044-8317.1984.tb00789.x
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
See also
Other Beta Sandwich Functions:
BetaHC()
,
BetaN()
,
DiffBetaSandwich()
,
RSqBetaSandwich()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaADF(object)
# Methods -------------------------------------------------------
print(std)
#> Call:
#> BetaADF(object = object)
#>
#> Standardized regression slopes with MVN standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0674 7.3490 42 0.0000 0.2568 0.3134 0.3592 0.6311 0.6769
#> PCTGRT 0.3915 0.0710 5.5164 42 0.0000 0.1404 0.2000 0.2483 0.5347 0.5830
#> PCTSUPP 0.2632 0.0769 3.4231 42 0.0014 -0.0088 0.0558 0.1081 0.4184 0.4707
#> 99.95%
#> NARTIC 0.7335
#> PCTGRT 0.6426
#> PCTSUPP 0.5353
summary(std)
#> Call:
#> BetaADF(object = object)
#>
#> Standardized regression slopes with MVN standard errors:
#> est se t df p 0.05% 0.5% 2.5% 97.5% 99.5%
#> NARTIC 0.4951 0.0674 7.3490 42 0.0000 0.2568 0.3134 0.3592 0.6311 0.6769
#> PCTGRT 0.3915 0.0710 5.5164 42 0.0000 0.1404 0.2000 0.2483 0.5347 0.5830
#> PCTSUPP 0.2632 0.0769 3.4231 42 0.0014 -0.0088 0.0558 0.1081 0.4184 0.4707
#> 99.95%
#> NARTIC 0.7335
#> PCTGRT 0.6426
#> PCTSUPP 0.5353
coef(std)
#> NARTIC PCTGRT PCTSUPP
#> 0.4951451 0.3914887 0.2632477
vcov(std)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.004539472 -0.002552698 -0.001742698
#> PCTGRT -0.002552698 0.005036538 -0.001906216
#> PCTSUPP -0.001742698 -0.001906216 0.005914088
confint(std, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.3591757 0.6311146
#> PCTGRT 0.2482683 0.5347091
#> PCTSUPP 0.1080509 0.4184444