betaMC: Example Using the SCorMC Function
Ivan Jacob Agaloos Pesigan
Source:vignettes/example-s-cor-mc.Rmd
      example-s-cor-mc.RmdConfidence intervals for semipartial correlation coefficients are
generated using the SCorMC() function from the
betaMC package. In this example, we use the data set and
the model used in betaMC: Example Using
the BetaMC Function.
df <- betaMC::nas1982Regression
Fit the regression model using the lm() function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)Monte Carlo Sampling Distribution of Parameters
Normal-Theory Approach
mvn <- MC(object, type = "mvn")Asymptotic distribution-free Approach
adf <- MC(object, type = "adf")Heteroskedasticity Consistent Approach (HC3)
hc3 <- MC(object, type = "hc3")Semipartial Correlation Coefficients
Normal-Theory Approach
mvn <- SCorMC(mvn)Asymptotic distribution-free Approach
adf <- SCorMC(adf)Heteroskedasticity Consistent Approach (HC3)
hc3 <- SCorMC(hc3)Methods
summary
Summary of the results of SCorMC().
summary(mvn)
#> Call:
#> SCorMC(object = mvn)
#> 
#> Semipartial correlations
#> type = "mvn"
#>            est     se     R  0.05%   0.5%   2.5%  97.5%  99.5% 99.95%
#> NARTIC  0.4312 0.0770 20000 0.1705 0.2285 0.2707 0.5723 0.6244 0.6898
#> PCTGRT  0.3430 0.0744 20000 0.1191 0.1573 0.1947 0.4857 0.5435 0.6031
#> PCTSUPP 0.2385 0.0701 20000 0.0265 0.0644 0.1013 0.3770 0.4287 0.4858
summary(adf)
#> Call:
#> SCorMC(object = adf)
#> 
#> Semipartial correlations
#> type = "adf"
#>            est     se     R  0.05%   0.5%   2.5%  97.5%  99.5% 99.95%
#> NARTIC  0.4312 0.0707 20000 0.0893 0.2103 0.2706 0.5477 0.5924 0.6456
#> PCTGRT  0.3430 0.0709 20000 0.0766 0.1453 0.1916 0.4688 0.5152 0.5804
#> PCTSUPP 0.2385 0.0697 20000 0.0013 0.0502 0.0951 0.3689 0.4170 0.4716
summary(hc3)
#> Call:
#> SCorMC(object = hc3)
#> 
#> Semipartial correlations
#> type = "hc3"
#>            est     se     R   0.05%   0.5%   2.5%  97.5%  99.5% 99.95%
#> NARTIC  0.4312 0.0860 20000  0.0553 0.1454 0.2258 0.5654 0.6173 0.6797
#> PCTGRT  0.3430 0.0832 20000  0.0490 0.1077 0.1609 0.4885 0.5421 0.6048
#> PCTSUPP 0.2385 0.0789 20000 -0.0352 0.0247 0.0772 0.3897 0.4495 0.5207vcov
Return the sampling covariance matrix.
vcov(mvn)
#>                NARTIC        PCTGRT       PCTSUPP
#> NARTIC   0.0059272821 -0.0012167694 -0.0008616098
#> PCTGRT  -0.0012167694  0.0055337929 -0.0008326223
#> PCTSUPP -0.0008616098 -0.0008326223  0.0049179926
vcov(adf)
#>                NARTIC        PCTGRT       PCTSUPP
#> NARTIC   0.0049971396  0.0002631899 -0.0003698228
#> PCTGRT   0.0002631899  0.0050250993 -0.0005940763
#> PCTSUPP -0.0003698228 -0.0005940763  0.0048536905
vcov(hc3)
#>                NARTIC        PCTGRT       PCTSUPP
#> NARTIC   0.0073916866  0.0007281651 -0.0002022310
#> PCTGRT   0.0007281651  0.0069252053 -0.0005981009
#> PCTSUPP -0.0002022310 -0.0005981009  0.0062233130confint
Return confidence intervals.
confint(mvn, level = 0.95)
#>             2.5 %    97.5 %
#> NARTIC  0.2706736 0.5723131
#> PCTGRT  0.1947400 0.4857045
#> PCTSUPP 0.1012615 0.3770397
confint(adf, level = 0.95)
#>              2.5 %    97.5 %
#> NARTIC  0.27063965 0.5476799
#> PCTGRT  0.19156579 0.4687909
#> PCTSUPP 0.09507792 0.3688795
confint(hc3, level = 0.95)
#>              2.5 %    97.5 %
#> NARTIC  0.22582761 0.5653624
#> PCTGRT  0.16092780 0.4884945
#> PCTSUPP 0.07723053 0.3896925References
Dudgeon, P. (2017). Some improvements in confidence intervals for
standardized regression coefficients. Psychometrika,
82(4), 928–951. https://doi.org/10.1007/s11336-017-9563-z