betaMC: Example Using the BetaMC Function
Ivan Jacob Agaloos Pesigan
Source:vignettes/example-beta-mc.Rmd
example-beta-mc.Rmd
In this example, a multiple regression model is fitted using program
quality ratings (QUALITY
) as the regressand/outcome
variable and number of published articles attributed to the program
faculty members (NARTIC
), percent of faculty members
holding research grants (PCTGRT
), and percentage of program
graduates who received support (PCTSUPP
) as
regressor/predictor variables using a data set from 1982 ratings of 46
doctoral programs in psychology in the USA (National Research Council, 1982). Confidence
intervals for the standardized regression coefficients are generated
using the BetaMC()
function from the betaMC
package.
df <- betaMC::nas1982
Regression
Fit the regression model using the lm()
function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)
Monte Carlo Sampling Distribution of Parameters
Normal-Theory Approach
mvn <- MC(object, type = "mvn")
Asymptotic distribution-free Approach
adf <- MC(object, type = "adf")
Heteroskedasticity Consistent Approach (HC3)
hc3 <- MC(object, type = "hc3")
Standardized Regression Slopes
Normal-Theory Approach
mvn <- BetaMC(mvn)
Asymptotic distribution-free Approach
adf <- BetaMC(adf)
Heteroskedasticity Consistent Approach (HC3)
hc3 <- BetaMC(hc3)
Methods
summary
Summary of the results of BetaMC()
.
summary(mvn)
#> Call:
#> BetaMC(object = mvn)
#>
#> Standardized regression slopes
#> type = "mvn"
#> est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95%
#> NARTIC 0.4951 0.0757 20000 0.2505 0.2922 0.3388 0.6335 0.6806 0.7295
#> PCTGRT 0.3915 0.0769 20000 0.1443 0.1934 0.2379 0.5399 0.5906 0.6539
#> PCTSUPP 0.2632 0.0749 20000 0.0296 0.0791 0.1171 0.4125 0.4593 0.5091
summary(adf)
#> Call:
#> BetaMC(object = adf)
#>
#> Standardized regression slopes
#> type = "adf"
#> est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95%
#> NARTIC 0.4951 0.0676 20000 0.2581 0.3091 0.3518 0.6158 0.6558 0.6931
#> PCTGRT 0.3915 0.0711 20000 0.1283 0.1942 0.2411 0.5188 0.5575 0.6031
#> PCTSUPP 0.2632 0.0768 20000 0.0136 0.0596 0.1084 0.4085 0.4548 0.5068
summary(hc3)
#> Call:
#> BetaMC(object = hc3)
#>
#> Standardized regression slopes
#> type = "hc3"
#> est se R 0.05% 0.5% 2.5% 97.5% 99.5% 99.95%
#> NARTIC 0.4951 0.0794 20000 0.2111 0.2706 0.3227 0.6340 0.6743 0.7262
#> PCTGRT 0.3915 0.0825 20000 0.0956 0.1568 0.2149 0.5386 0.5834 0.6322
#> PCTSUPP 0.2632 0.0855 20000 -0.0333 0.0281 0.0890 0.4278 0.4782 0.5478
vcov
Return the sampling covariance matrix.
vcov(mvn)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.005728673 -0.003274517 -0.00217137
#> PCTGRT -0.003274517 0.005910844 -0.00172188
#> PCTSUPP -0.002171370 -0.001721880 0.00560837
vcov(adf)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.004575329 -0.002529996 -0.001687205
#> PCTGRT -0.002529996 0.005059420 -0.001914164
#> PCTSUPP -0.001687205 -0.001914164 0.005892514
vcov(hc3)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.006310814 -0.003616011 -0.001986759
#> PCTGRT -0.003616011 0.006805482 -0.002311942
#> PCTSUPP -0.001986759 -0.002311942 0.007317821
confint
Return confidence intervals.
confint(mvn, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.3387912 0.6334927
#> PCTGRT 0.2379335 0.5399119
#> PCTSUPP 0.1171396 0.4124892
confint(adf, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.3518445 0.6157971
#> PCTGRT 0.2411247 0.5187594
#> PCTSUPP 0.1084217 0.4084592
confint(hc3, level = 0.95)
#> 2.5 % 97.5 %
#> NARTIC 0.32267000 0.6340454
#> PCTGRT 0.21488495 0.5386319
#> PCTSUPP 0.08897104 0.4278247