Skip to contents

Sampling Covariance Matrix of the Parameter Estimates

Usage

# S3 method for class 'semmcci'
vcov(object, ...)

Arguments

object

Object of class semmcci.

...

additional arguments.

Value

Returns a matrix of the variance-covariance matrix of parameter estimates.

Author

Ivan Jacob Agaloos Pesigan

Examples

library(semmcci)
library(lavaan)

# Data ---------------------------------------------------------------------
data("Tal.Or", package = "psych")
df <- mice::ampute(Tal.Or)$amp

# Monte Carlo --------------------------------------------------------------
## Fit Model in lavaan -----------------------------------------------------
model <- "
  reaction ~ cp * cond + b * pmi
  pmi ~ a * cond
  cond ~~ cond
  indirect := a * b
  direct := cp
  total := cp + (a * b)
"
fit <- sem(data = df, model = model, missing = "fiml")

## MC() --------------------------------------------------------------------
unstd <- MC(
  fit,
  R = 5L # use a large value e.g., 20000L for actual research
)

## Standardized Monte Carlo ------------------------------------------------
std <- MCStd(unstd)
vcov(unstd)
#>                              cp            b            a    cond~~cond
#> cp                  0.039066492  0.011698379  0.032755477 -0.0017620634
#> b                   0.011698379  0.007359478  0.012554745 -0.0017313998
#> a                   0.032755477  0.012554745  0.095823511 -0.0036958106
#> cond~~cond         -0.001762063 -0.001731400 -0.003695811  0.0006816860
#> reaction~~reaction -0.016327532  0.002206287  0.074637300 -0.0029311596
#> pmi~~pmi           -0.009875306 -0.013608940 -0.035057700  0.0077099882
#> reaction~1         -0.098351989 -0.051901820 -0.125542595  0.0110416113
#> pmi~1              -0.025565788 -0.007581380 -0.041565735  0.0023157837
#> cond~1              0.001287613 -0.001532645  0.002768928  0.0004349964
#> indirect            0.019990765  0.009414656  0.046710595 -0.0024531684
#> direct              0.039066492  0.011698379  0.032755477 -0.0017620634
#> total               0.059057256  0.021113035  0.079466072 -0.0042152318
#>                    reaction~~reaction     pmi~~pmi  reaction~1        pmi~1
#> cp                       -0.016327532 -0.009875306 -0.09835199 -0.025565788
#> b                         0.002206287 -0.013608940 -0.05190182 -0.007581380
#> a                         0.074637300 -0.035057700 -0.12554259 -0.041565735
#> cond~~cond               -0.002931160  0.007709988  0.01104161  0.002315784
#> reaction~~reaction        0.124635693 -0.034999087 -0.03540257 -0.013500247
#> pmi~~pmi                 -0.034999087  0.100799559  0.07760014  0.025880432
#> reaction~1               -0.035402571  0.077600144  0.39397526  0.068441764
#> pmi~1                    -0.013500247  0.025880432  0.06844176  0.025868832
#> cond~1                   -0.000291130  0.003320815  0.00688657 -0.001975610
#> indirect                  0.032555222 -0.020999304 -0.08190777 -0.021056066
#> direct                   -0.016327532 -0.009875306 -0.09835199 -0.025565788
#> total                     0.016227690 -0.030874610 -0.18025976 -0.046621854
#>                           cond~1      indirect       direct        total
#> cp                  0.0012876130  0.0199907648  0.039066492  0.059057256
#> b                  -0.0015326450  0.0094146561  0.011698379  0.021113035
#> a                   0.0027689279  0.0467105950  0.032755477  0.079466072
#> cond~~cond          0.0004349964 -0.0024531684 -0.001762063 -0.004215232
#> reaction~~reaction -0.0002911300  0.0325552218 -0.016327532  0.016227690
#> pmi~~pmi            0.0033208155 -0.0209993043 -0.009875306 -0.030874610
#> reaction~1          0.0068865701 -0.0819077662 -0.098351989 -0.180259755
#> pmi~1              -0.0019756100 -0.0210560659 -0.025565788 -0.046621854
#> cond~1              0.0011464897  0.0002012974  0.001287613  0.001488910
#> indirect            0.0002012974  0.0247069130  0.019990765  0.044697678
#> direct              0.0012876130  0.0199907648  0.039066492  0.059057256
#> total               0.0014889104  0.0446976778  0.059057256  0.103754934
vcov(std)
#>                               cp             b             a    cond~~cond
#> cp                  3.460117e-03  2.036484e-03  2.045780e-03  5.773842e-18
#> b                   2.036484e-03  3.301461e-03 -1.084031e-03  3.668813e-18
#> a                   2.045780e-03 -1.084031e-03  1.218633e-02  4.382161e-18
#> cond~~cond          5.773842e-18  3.668813e-18  4.382161e-18  3.081488e-32
#> reaction~~reaction -3.202985e-03 -3.208808e-03 -1.592471e-03 -5.698818e-18
#> pmi~~pmi           -4.916690e-04 -6.041327e-05 -2.236996e-03 -1.179362e-18
#> indirect            1.237260e-03  1.359394e-04  5.071720e-03  2.555414e-18
#> direct              3.460117e-03  2.036484e-03  2.045780e-03  5.773842e-18
#> total               4.697378e-03  2.172423e-03  7.117500e-03  8.329256e-18
#>                    reaction~~reaction      pmi~~pmi      indirect        direct
#> cp                      -3.202985e-03 -4.916690e-04  1.237260e-03  3.460117e-03
#> b                       -3.208808e-03 -6.041327e-05  1.359394e-04  2.036484e-03
#> a                       -1.592471e-03 -2.236996e-03  5.071720e-03  2.045780e-03
#> cond~~cond              -5.698818e-18 -1.179362e-18  2.555414e-18  5.773842e-18
#> reaction~~reaction       3.951007e-03  5.388739e-04 -1.268497e-03 -3.202985e-03
#> pmi~~pmi                 5.388739e-04  4.351741e-04 -9.794623e-04 -4.916690e-04
#> indirect                -1.268497e-03 -9.794623e-04  2.218579e-03  1.237260e-03
#> direct                  -3.202985e-03 -4.916690e-04  1.237260e-03  3.460117e-03
#> total                   -4.471482e-03 -1.471131e-03  3.455840e-03  4.697378e-03
#>                            total
#> cp                  4.697378e-03
#> b                   2.172423e-03
#> a                   7.117500e-03
#> cond~~cond          8.329256e-18
#> reaction~~reaction -4.471482e-03
#> pmi~~pmi           -1.471131e-03
#> indirect            3.455840e-03
#> direct              4.697378e-03
#> total               8.153217e-03

# Monte Carlo (Multiple Imputation) ----------------------------------------
## Multiple Imputation -----------------------------------------------------
mi <- mice::mice(
  data = df,
  print = FALSE,
  m = 5L, # use a large value e.g., 100L for actual research,
  seed = 42
)

## Fit Model in lavaan -----------------------------------------------------
fit <- sem(data = df, model = model) # use default listwise deletion

## MCMI() ------------------------------------------------------------------
unstd <- MCMI(
  fit,
  mi = mi,
  R = 5L # use a large value e.g., 20000L for actual research
)

## Standardized Monte Carlo ------------------------------------------------
std <- MCStd(unstd)
vcov(unstd)
#>                              cp             b             a    cond~~cond
#> cp                  0.128087046 -0.0161556549  0.0756512619 -0.0041343946
#> b                  -0.016155655  0.0068229557 -0.0081532762 -0.0010351199
#> a                   0.075651262 -0.0081532762  0.0736680253 -0.0003130791
#> cond~~cond         -0.004134395 -0.0010351199 -0.0003130791  0.0011053446
#> reaction~~reaction -0.061111597  0.0076534803 -0.0267373109  0.0023861218
#> pmi~~pmi            0.005690506 -0.0049090291  0.0214524821  0.0021034157
#> indirect            0.029143382 -0.0005202855  0.0304357228 -0.0010323438
#> direct              0.128087046 -0.0161556549  0.0756512619 -0.0041343946
#> total               0.157230428 -0.0166759404  0.1060869847 -0.0051667384
#>                    reaction~~reaction     pmi~~pmi      indirect       direct
#> cp                       -0.061111597  0.005690506  0.0291433820  0.128087046
#> b                         0.007653480 -0.004909029 -0.0005202855 -0.016155655
#> a                        -0.026737311  0.021452482  0.0304357228  0.075651262
#> cond~~cond                0.002386122  0.002103416 -0.0010323438 -0.004134395
#> reaction~~reaction        0.033102670  0.005250205 -0.0095637948 -0.061111597
#> pmi~~pmi                  0.005250205  0.019852649  0.0074651507  0.005690506
#> indirect                 -0.009563795  0.007465151  0.0141445333  0.029143382
#> direct                   -0.061111597  0.005690506  0.0291433820  0.128087046
#> total                    -0.070675391  0.013155657  0.0432879153  0.157230428
#>                           total
#> cp                  0.157230428
#> b                  -0.016675940
#> a                   0.106086985
#> cond~~cond         -0.005166738
#> reaction~~reaction -0.070675391
#> pmi~~pmi            0.013155657
#> indirect            0.043287915
#> direct              0.157230428
#> total               0.200518343
vcov(std)
#>                               cp             b             a    cond~~cond
#> cp                  1.452216e-02 -2.047259e-03  8.970993e-03 -9.793753e-18
#> b                  -2.047259e-03  2.300095e-03 -5.723018e-04 -2.175806e-18
#> a                   8.970993e-03 -5.723018e-04  8.996417e-03 -5.161647e-18
#> cond~~cond         -9.793753e-18 -2.175806e-18 -5.161647e-18  1.540744e-32
#> reaction~~reaction -1.242452e-04 -1.417564e-03 -1.264103e-03  2.105270e-18
#> pmi~~pmi           -3.061503e-03  3.081631e-04 -3.346540e-03  1.431808e-18
#> indirect            3.469278e-03  1.433120e-04  3.653172e-03 -2.574363e-18
#> direct              1.452216e-02 -2.047259e-03  8.970993e-03 -9.793753e-18
#> total               1.799144e-02 -1.903947e-03  1.262417e-02 -1.236812e-17
#>                    reaction~~reaction      pmi~~pmi      indirect        direct
#> cp                      -1.242452e-04 -3.061503e-03  3.469278e-03  1.452216e-02
#> b                       -1.417564e-03  3.081631e-04  1.433120e-04 -2.047259e-03
#> a                       -1.264103e-03 -3.346540e-03  3.653172e-03  8.970993e-03
#> cond~~cond               2.105270e-18  1.431808e-18 -2.574363e-18 -9.793753e-18
#> reaction~~reaction       1.181544e-03  4.097304e-04 -7.635608e-04 -1.242452e-04
#> pmi~~pmi                 4.097304e-04  1.285181e-03 -1.332674e-03 -3.061503e-03
#> indirect                -7.635608e-04 -1.332674e-03  1.549249e-03  3.469278e-03
#> direct                  -1.242452e-04 -3.061503e-03  3.469278e-03  1.452216e-02
#> total                   -8.878061e-04 -4.394177e-03  5.018526e-03  1.799144e-02
#>                            total
#> cp                  1.799144e-02
#> b                  -1.903947e-03
#> a                   1.262417e-02
#> cond~~cond         -1.236812e-17
#> reaction~~reaction -8.878061e-04
#> pmi~~pmi           -4.394177e-03
#> indirect            5.018526e-03
#> direct              1.799144e-02
#> total               2.300996e-02