Calculates Monte Carlo confidence intervals for free and defined parameters.
Usage
MC(
lav,
R = 20000L,
alpha = c(0.001, 0.01, 0.05),
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
seed = NULL
)
Arguments
- lav
Object of class
lavaan
.- R
Positive integer. Number of Monte Carlo replications.
- alpha
Numeric vector. Significance level \(\alpha\).
- decomposition
Character string. Matrix decomposition of the sampling variance-covariance matrix for the data generation. If
decomposition = "chol"
, use Cholesky decomposition. Ifdecomposition = "eigen"
, use eigenvalue decomposition. Ifdecomposition = "svd"
, use singular value decomposition.- pd
Logical. If
pd = TRUE
, check if the sampling variance-covariance matrix is positive definite usingtol
.- tol
Numeric. Tolerance used for
pd
.- seed
Integer. Random seed for reproducibility.
Value
Returns an object of class semmcci
which is
a list with the following elements:
- call
Function call.
- args
List of function arguments.
- thetahat
Parameter estimates \(\hat{\theta}\).
- thetahatstar
Sampling distribution of parameter estimates \(\hat{\theta}^{\ast}\).
- fun
Function used ("MC").
Details
A sampling distribution of parameter estimates is generated
from the multivariate normal distribution
using the parameter estimates and the sampling variance-covariance matrix.
Confidence intervals for free and defined parameters
are generated using the simulated sampling distribution.
Parameters can be defined using the :=
operator
in the lavaan
model syntax.
References
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99-128. doi:10.1207/s15327906mbr3901_4
Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods. doi:10.3758/s13428-023-02114-4
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. doi:10.1080/19312458.2012.679848
Examples
library(semmcci)
library(lavaan)
#> This is lavaan 0.6-19
#> lavaan is FREE software! Please report any bugs.
# Data ---------------------------------------------------------------------
data("Tal.Or", package = "psych")
df <- mice::ampute(Tal.Or)$amp
# Monte Carlo --------------------------------------------------------------
## Fit Model in lavaan -----------------------------------------------------
model <- "
reaction ~ cp * cond + b * pmi
pmi ~ a * cond
cond ~~ cond
indirect := a * b
direct := cp
total := cp + (a * b)
"
fit <- sem(data = df, model = model, missing = "fiml")
## MC() --------------------------------------------------------------------
MC(
fit,
R = 5L, # use a large value e.g., 20000L for actual research
alpha = 0.05
)
#> Monte Carlo Confidence Intervals
#> est se R 2.5% 97.5%
#> cp 0.3796 0.2695 5 0.0821 0.6708
#> b 0.4880 0.0889 5 0.4749 0.6736
#> a 0.5426 0.3560 5 -0.0026 0.8971
#> cond~~cond 0.2496 0.0128 5 0.2260 0.2568
#> reaction~~reaction 1.7760 0.1978 5 1.4029 1.8400
#> pmi~~pmi 1.7238 0.2483 5 1.4316 2.0547
#> reaction~1 0.5868 0.4777 5 -0.3956 0.6504
#> pmi~1 5.3616 0.1764 5 5.1393 5.5821
#> cond~1 0.4939 0.0413 5 0.4566 0.5488
#> indirect 0.2648 0.1950 5 -0.0091 0.4848
#> direct 0.3796 0.2695 5 0.0821 0.6708
#> total 0.6444 0.2665 5 0.2695 0.8630