Calculates Monte Carlo confidence intervals
for defined parameters
for any fitted model object with coef
and vcov
methods.
Usage
MCGeneric(
object,
def,
R = 20000L,
alpha = c(0.001, 0.01, 0.05),
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
seed = NULL
)
Arguments
- object
R object. Fitted model object with
coef
andvcov
methods that return a named vector of estimated parameters and sampling variance-covariance matrix, respectively.- def
List of character strings. A list of defined functions of parameters. The string should be a valid R expression when parsed and should result a single value when evaluated.
- R
Positive integer. Number of Monte Carlo replications.
- alpha
Numeric vector. Significance level \(\alpha\).
- decomposition
Character string. Matrix decomposition of the sampling variance-covariance matrix for the data generation. If
decomposition = "chol"
, use Cholesky decomposition. Ifdecomposition = "eigen"
, use eigenvalue decomposition. Ifdecomposition = "svd"
, use singular value decomposition.- pd
Logical. If
pd = TRUE
, check if the sampling variance-covariance matrix is positive definite usingtol
.- tol
Numeric. Tolerance used for
pd
.- seed
Integer. Random seed for reproducibility.
Value
Returns an object of class semmcci
which is
a list with the following elements:
- call
Function call.
- args
List of function arguments.
- thetahat
Parameter estimates \(\hat{\theta}\).
- thetahatstar
Sampling distribution of parameter estimates \(\hat{\theta}^{\ast}\).
- fun
Function used ("MCGeneric").
Details
A sampling distribution of parameter estimates is generated
from the multivariate normal distribution
using the parameter estimates and the sampling variance-covariance matrix.
Confidence intervals for defined parameters
are generated using the simulated sampling distribution.
Parameters are defined using the def
argument.
References
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99-128. doi:10.1207/s15327906mbr3901_4
Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods. doi:10.3758/s13428-023-02114-4
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. doi:10.1080/19312458.2012.679848
Examples
library(semmcci)
library(lavaan)
# Data ---------------------------------------------------------------------
data("Tal.Or", package = "psych")
df <- mice::ampute(Tal.Or)$amp
# Monte Carlo --------------------------------------------------------------
## Fit Model in lavaan -----------------------------------------------------
model <- "
reaction ~ cp * cond + b * pmi
pmi ~ a * cond
cond ~~ cond
"
fit <- sem(data = df, model = model, missing = "fiml")
## MCGeneric() -------------------------------------------------------------
MCGeneric(
fit,
R = 5L, # use a large value e.g., 20000L for actual research
alpha = 0.05,
def = list(
"a * b",
"cp + (a * b)"
)
)
#> est se R 2.5% 97.5%
#> a * b 0.1730 0.1408 5 -0.0086 0.3181
#> cp + (a * b) 0.4381 0.2928 5 0.2206 0.9274