Skip to contents

The cTMed package offers tools for estimating and quantifying uncertainty in standardized total, direct, and indirect effects within continuous-time mediation models across various time intervals using the delta and Monte Carlo methods. To implement these approaches, estimates from a continuous-time vector autoregressive (CT-VAR) model are required, particularly the drift matrix, and process noise covariance matrix with the corresponding sampling variance-covariance matrix. For guidance on fitting CT-VAR models using the dynr or OpenMx packages, refer to Fit the Continuous-Time Vector Autoregressive Model Using the dynr Package and Fit the Continuous-Time Vector Autoregressive Model Using the OpenMx Package, respectively.

summary(fit)
#> Coefficients:
#>             Estimate Std. Error t value  ci.lower  ci.upper Pr(>|t|)    
#> phi_1_1    -0.351839   0.036416  -9.662 -0.423213 -0.280465   <2e-16 ***
#> phi_2_1     0.744282   0.021777  34.177  0.701599  0.786964   <2e-16 ***
#> phi_3_1    -0.458680   0.023534 -19.490 -0.504806 -0.412554   <2e-16 ***
#> phi_1_2     0.017311   0.031705   0.546 -0.044829  0.079451   0.2925    
#> phi_2_2    -0.488821   0.019277 -25.358 -0.526602 -0.451039   <2e-16 ***
#> phi_3_2     0.726800   0.020871  34.824  0.685894  0.767706   <2e-16 ***
#> phi_1_3    -0.023814   0.024025  -0.991 -0.070903  0.023275   0.1608    
#> phi_2_3    -0.009810   0.014718  -0.667 -0.038657  0.019036   0.2525    
#> phi_3_3    -0.688334   0.016040 -42.913 -0.719773 -0.656896   <2e-16 ***
#> sigma_1_1   0.242180   0.006794  35.646  0.228864  0.255496   <2e-16 ***
#> sigma_2_1   0.023273   0.002545   9.146  0.018285  0.028261   <2e-16 ***
#> sigma_3_1  -0.050574   0.002749 -18.395 -0.055963 -0.045186   <2e-16 ***
#> sigma_2_2   0.070722   0.001907  37.093  0.066985  0.074458   <2e-16 ***
#> sigma_3_2   0.014987   0.001381  10.854  0.012281  0.017694   <2e-16 ***
#> sigma_3_3   0.072376   0.002099  34.475  0.068261  0.076491   <2e-16 ***
#> theta_1_1   0.198861   0.001170 169.909  0.196567  0.201155   <2e-16 ***
#> theta_2_2   0.199520   0.001000 199.500  0.197560  0.201480   <2e-16 ***
#> theta_3_3   0.201172   0.001016 198.052  0.199181  0.203162   <2e-16 ***
#> mu0_1_1     0.006324   0.111110   0.057 -0.211447  0.224095   0.4773    
#> mu0_2_1    -0.042530   0.114320  -0.372 -0.266593  0.181533   0.3549    
#> mu0_3_1     0.130043   0.102109   1.274 -0.070086  0.330172   0.1014    
#> sigma0_1_1  1.150287   0.168811   6.814  0.819425  1.481150   <2e-16 ***
#> sigma0_2_1  0.413648   0.133495   3.099  0.152003  0.675293   0.0010 ***
#> sigma0_3_1  0.225993   0.123478   1.830 -0.016019  0.468006   0.0336 *  
#> sigma0_2_2  1.221957   0.182233   6.705  0.864787  1.579128   <2e-16 ***
#> sigma0_3_2  0.235327   0.117629   2.001  0.004779  0.465875   0.0227 *  
#> sigma0_3_3  0.962594   0.142152   6.772  0.683981  1.241207   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> -2 log-likelihood value at convergence = 429365.49
#> AIC = 429419.49
#> BIC = 429676.34
phi_varnames <- c(
  "phi_1_1",
  "phi_2_1",
  "phi_3_1",
  "phi_1_2",
  "phi_2_2",
  "phi_3_2",
  "phi_1_3",
  "phi_2_3",
  "phi_3_3"
)
phi <- matrix(
  data = coef(fit)[phi_varnames],
  nrow = 3,
  ncol = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma_varnames <- c(
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_1", "sigma_2_2", "sigma_3_2",
  "sigma_3_1", "sigma_3_2", "sigma_3_3"
)
sigma <- matrix(
  data = coef(fit)[sigma_varnames],
  nrow = 3,
  ncol = 3
)
theta_varnames <- c(
  phi_varnames,
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_2", "sigma_3_2",
  "sigma_3_3"
)
vcov_theta <- vcov(fit)[theta_varnames, theta_varnames]
# Drift matrix
phi
#>            x           m            y
#> x -0.3518392  0.01731083 -0.023814339
#> m  0.7442816 -0.48882067 -0.009810166
#> y -0.4586796  0.72679980 -0.688334177
# Process noise covariance matrix
sigma
#>             [,1]       [,2]        [,3]
#> [1,]  0.24218026 0.02327296 -0.05057416
#> [2,]  0.02327296 0.07072156  0.01498732
#> [3,] -0.05057416 0.01498732  0.07237598
# Sampling variance-covariance matrix
vcov_theta
#>                 phi_1_1       phi_2_1       phi_3_1       phi_1_2       phi_2_2
#> phi_1_1    1.326121e-03  9.158296e-05 -2.258193e-04 -1.108000e-03 -8.829144e-05
#> phi_2_1    9.158296e-05  4.742430e-04 -3.596064e-06 -6.566903e-05 -4.021299e-04
#> phi_3_1   -2.258193e-04 -3.596064e-06  5.538551e-04  1.845433e-04  1.077730e-05
#> phi_1_2   -1.108000e-03 -6.566903e-05  1.845433e-04  1.005190e-03  7.060966e-05
#> phi_2_2   -8.829144e-05 -4.021299e-04  1.077730e-05  7.060966e-05  3.715859e-04
#> phi_3_2    1.994853e-04 -3.470399e-06 -4.716662e-04 -1.780693e-04 -3.561584e-06
#> phi_1_3    7.414387e-04  3.913166e-05 -1.151977e-04 -6.965449e-04 -4.344659e-05
#> phi_2_3    6.974956e-05  2.704005e-04 -1.452237e-05 -5.931610e-05 -2.595864e-04
#> phi_3_3   -1.424724e-04  7.176532e-06  3.208390e-04  1.318148e-04 -2.963173e-06
#> sigma_1_1 -1.982932e-04 -2.184773e-05  3.456919e-05  1.543789e-04  1.849510e-05
#> sigma_2_1  1.502203e-05 -3.437997e-05 -6.620570e-06 -1.591184e-05  2.574007e-05
#> sigma_3_1  1.794495e-05  4.674418e-06 -4.279970e-05 -1.117672e-05 -3.814434e-06
#> sigma_2_2  4.361454e-07  1.424515e-05  1.010140e-06 -1.579752e-07 -1.451605e-05
#> sigma_3_2 -3.741407e-06  1.607279e-06  8.491226e-06  3.585007e-06  4.201294e-07
#> sigma_3_3 -1.043117e-06 -8.607286e-07  3.442663e-06  7.089937e-08  4.858637e-07
#>                 phi_3_2       phi_1_3       phi_2_3       phi_3_3     sigma_1_1
#> phi_1_1    1.994853e-04  7.414387e-04  6.974956e-05 -1.424724e-04 -1.982932e-04
#> phi_2_1   -3.470399e-06  3.913166e-05  2.704005e-04  7.176532e-06 -2.184773e-05
#> phi_3_1   -4.716662e-04 -1.151977e-04 -1.452237e-05  3.208390e-04  3.456919e-05
#> phi_1_2   -1.780693e-04 -6.965449e-04 -5.931610e-05  1.318148e-04  1.543789e-04
#> phi_2_2   -3.561584e-06 -4.344659e-05 -2.595864e-04 -2.963173e-06  1.849510e-05
#> phi_3_2    4.355884e-04  1.163975e-04  1.028072e-05 -3.075120e-04 -2.844219e-05
#> phi_1_3    1.163975e-04  5.772234e-04  4.373490e-05 -1.045143e-04 -9.445101e-05
#> phi_2_3    1.028072e-05  4.373490e-05  2.166149e-04 -2.958830e-06 -1.266847e-05
#> phi_3_3   -3.075120e-04 -1.045143e-04 -2.958830e-06  2.572924e-04  1.859927e-05
#> sigma_1_1 -2.844219e-05 -9.445101e-05 -1.266847e-05  1.859927e-05  4.616001e-05
#> sigma_2_1  6.267263e-06  1.038566e-05 -1.506230e-05 -4.238014e-06 -3.795706e-07
#> sigma_3_1  3.275583e-05  1.446600e-06  2.154429e-06 -1.897455e-05 -5.585381e-06
#> sigma_2_2 -1.392458e-06  1.948765e-08  9.194261e-06  1.027499e-06 -1.692509e-07
#> sigma_3_2 -8.374628e-06 -2.326402e-06 -2.643065e-06  5.086543e-06  3.054065e-07
#> sigma_3_3  6.621115e-07  1.340588e-06  1.970612e-07 -5.788873e-06  6.193436e-07
#>               sigma_2_1     sigma_3_1     sigma_2_2     sigma_3_2     sigma_3_3
#> phi_1_1    1.502203e-05  1.794495e-05  4.361454e-07 -3.741407e-06 -1.043117e-06
#> phi_2_1   -3.437997e-05  4.674418e-06  1.424515e-05  1.607279e-06 -8.607286e-07
#> phi_3_1   -6.620570e-06 -4.279970e-05  1.010140e-06  8.491226e-06  3.442663e-06
#> phi_1_2   -1.591184e-05 -1.117672e-05 -1.579752e-07  3.585007e-06  7.089937e-08
#> phi_2_2    2.574007e-05 -3.814434e-06 -1.451605e-05  4.201294e-07  4.858637e-07
#> phi_3_2    6.267263e-06  3.275583e-05 -1.392458e-06 -8.374628e-06  6.621115e-07
#> phi_1_3    1.038566e-05  1.446600e-06  1.948765e-08 -2.326402e-06  1.340588e-06
#> phi_2_3   -1.506230e-05  2.154429e-06  9.194261e-06 -2.643065e-06  1.970612e-07
#> phi_3_3   -4.238014e-06 -1.897455e-05  1.027499e-06  5.086543e-06 -5.788873e-06
#> sigma_1_1 -3.795706e-07 -5.585381e-06 -1.692509e-07  3.054065e-07  6.193436e-07
#> sigma_2_1  6.475588e-06  1.002384e-07 -4.387889e-07 -9.708718e-07  3.360567e-08
#> sigma_3_1  1.002384e-07  7.558692e-06  9.058849e-08 -3.163361e-07 -1.947016e-06
#> sigma_2_2 -4.387889e-07  9.058849e-08  3.635137e-06  3.523268e-08 -4.509608e-08
#> sigma_3_2 -9.708718e-07 -3.163361e-07  3.523268e-08  1.906780e-06  4.773520e-08
#> sigma_3_3  3.360567e-08 -1.947016e-06 -4.509608e-08  4.773520e-08  4.407331e-06

In this example, we aim to calculate the total, direct, and indirect effects of x on y, mediated through m, over time intervals ranging from 0 to 10.

# time intervals
delta_t <- seq(from = 0, to = 10, length.out = 1000)

Delta Method

library(cTMed)
start <- Sys.time()
delta <- DeltaMedStd(
  phi = phi,
  sigma = sigma,
  vcov_theta = vcov_theta,
  delta_t = delta_t,
  from = "x",
  to = "y",
  med = "m",
  ncores = parallel::detectCores() # use multiple cores
)
end <- Sys.time()
elapsed <- end - start
elapsed
#> Time difference of 0.8466625 secs
plot(delta)

Monte Carlo Method

start <- Sys.time()
mc <- MCMedStd(
  phi = phi,
  sigma = sigma,
  vcov_theta = vcov_theta,
  delta_t = delta_t,
  from = "x",
  to = "y",
  med = "m",
  R = 20000L,
  ncores = parallel::detectCores() # use multiple cores
)
end <- Sys.time()
elapsed <- end - start
elapsed
#> Time difference of 15.01979 mins
plot(mc)

References

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 61–75. https://doi.org/10.1080/10705511.2014.973960
Pesigan, I. J. A., Russell, M. A., & Chow, S.-M. (2025). Inferences and effect sizes for direct, indirect, and total effects in continuous-time mediation models. Psychological Methods. https://doi.org/10.1037/met0000779
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87(1), 214–252. https://doi.org/10.1007/s11336-021-09767-0