Skip to contents

Data Generation Using the SimSSMOUFixed Function from the simStateSpace Package

n
#> [1] 5
time
#> [1] 100
delta_t
#> [1] 0.1
mu0
#> [1] 0 0 0
sigma0
#>      [,1] [,2] [,3]
#> [1,]  1.0  0.2  0.2
#> [2,]  0.2  1.0  0.2
#> [3,]  0.2  0.2  1.0
sigma0_l # sigma0_l <- t(chol(sigma0))
#>      [,1]      [,2]      [,3]
#> [1,]  1.0 0.0000000 0.0000000
#> [2,]  0.2 0.9797959 0.0000000
#> [3,]  0.2 0.1632993 0.9660918
mu
#> [1] 0 0 0
phi
#>        [,1]   [,2]   [,3]
#> [1,] -0.357  0.000  0.000
#> [2,]  0.771 -0.511  0.000
#> [3,] -0.450  0.729 -0.693
sigma
#>             [,1]       [,2]        [,3]
#> [1,]  0.24455556 0.02201587 -0.05004762
#> [2,]  0.02201587 0.07067800  0.01539456
#> [3,] -0.05004762 0.01539456  0.07553061
sigma_l # sigma_l <- t(chol(sigma))
#>             [,1]      [,2]     [,3]
#> [1,]  0.49452559 0.0000000 0.000000
#> [2,]  0.04451917 0.2620993 0.000000
#> [3,] -0.10120330 0.0759256 0.243975
nu
#> [1] 0 0 0
lambda
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    0
#> [3,]    0    0    1
theta
#>      [,1] [,2] [,3]
#> [1,]  0.2  0.0  0.0
#> [2,]  0.0  0.2  0.0
#> [3,]  0.0  0.0  0.2
theta_l # theta_l <- t(chol(theta))
#>           [,1]      [,2]      [,3]
#> [1,] 0.4472136 0.0000000 0.0000000
#> [2,] 0.0000000 0.4472136 0.0000000
#> [3,] 0.0000000 0.0000000 0.4472136
library(simStateSpace)
sim <- SimSSMOUFixed(
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_l = theta_l,
  type = 0
)
data <- as.data.frame(sim)
colnames(data) <- c("id", "time", "x", "m", "y")
head(data)
#>   id time          x          m        y
#> 1  1  0.0 -0.3504435 0.41877429 2.611996
#> 2  1  0.1 -0.5920330 1.07433208 1.669272
#> 3  1  0.2 -0.7619855 1.21483834 2.369837
#> 4  1  0.3 -1.6964652 0.21209722 2.128531
#> 5  1  0.4 -1.2282686 0.09950326 1.891140
#> 6  1  0.5  0.1433985 0.66784226 2.036033

Model Fitting

We use the OpenMx package to fit the continuous-time vector autoregressive model.

Prepare the Initial Condition

mu0 <- mxMatrix(
  type = "Full",
  nrow = 3,
  ncol = 1,
  free = TRUE,
  values = matrix(
    data = c(
      0, 0, 0
    ),
    nrow = 3,
    ncol = 1
  ),
  labels = matrix(
    data = c(
      "mu0_1_1", "mu0_2_1", "mu0_3_1"
    ),
    nrow = 3,
    ncol = 1
  ),
  lbound = NA,
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    "mu0"
  ),
  name = "mu0"
)
sigma0 <- mxMatrix(
  type = "Symm",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = matrix(
    data = c(
      1.0, 0.2, 0.2,
      0.2, 1.0, 0.2,
      0.2, 0.2, 1.0
    ),
    nrow = 3,
    ncol = 3
  ),
  labels = matrix(
    data = c(
      "sigma0_1_1", "sigma0_2_1", "sigma0_3_1",
      "sigma0_2_1", "sigma0_2_2", "sigma0_3_2",
      "sigma0_3_1", "sigma0_3_2", "sigma0_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = matrix(
    data = c(
      0, NA, NA,
      NA, 0, NA,
      NA, NA, 0
    ),
    nrow = 3,
    ncol = 3
  ),
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "sigma0"
)

Prepare the Measurement Model

lambda <- mxMatrix(
  type = "Diag",
  nrow = 3,
  ncol = 3,
  free = FALSE,
  values = 1,
  labels = NA,
  lbound = NA,
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("x", "m", "y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "lambda"
)

Prepare the Dynamic Model

phi <- mxMatrix(
  type = "Full",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = matrix(
    data = c(
      -0.2, 0.0, 0.0,
      0.0, -0.2, 0.0,
      0.0, 0.0, -0.2
    ),
    nrow = 3,
    ncol = 3
  ),
  labels = matrix(
    data = c(
      "phi_1_1", "phi_2_1", "phi_3_1",
      "phi_1_2", "phi_2_2", "phi_3_2",
      "phi_1_3", "phi_2_3", "phi_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = -1.5,
  ubound = 1.5,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "phi"
)

Prepare the Noise Matrices

sigma <- mxMatrix(
  type = "Symm",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = 0.2 * diag(3),
  labels = matrix(
    data = c(
      "sigma_1_1", "sigma_2_1", "sigma_3_1",
      "sigma_2_1", "sigma_2_2", "sigma_3_2",
      "sigma_3_1", "sigma_3_2", "sigma_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = matrix(
    data = c(
      0, NA, NA,
      NA, 0, NA,
      NA, NA, 0
    ),
    nrow = 3,
    ncol = 3
  ),
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "sigma"
)
theta <- mxMatrix(
  type = "Diag",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = 0.2 * diag(3),
  labels = matrix(
    data = c(
      "theta_1_1", "fixed", "fixed",
      "fixed", "theta_2_2", "fixed",
      "fixed", "fixed", "theta_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = matrix(
    data = c(
      0, NA, NA,
      NA, 0, NA,
      NA, NA, 0
    ),
    nrow = 3,
    ncol = 3
  ),
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("x", "m", "y"),
    c("x", "m", "y")
  ),
  name = "theta"
)

Prepare Miscellaneous Matrices

time <- mxMatrix(
  type = "Full",
  nrow = 1,
  ncol = 1,
  free = FALSE,
  labels = "data.time",
  name = "time"
)
gamma <- mxMatrix(
  type = "Zero",
  nrow = 3,
  ncol = 1,
  name = "gamma"
)
kappa <- mxMatrix(
  type = "Zero",
  nrow = 3,
  ncol = 1,
  name = "kappa"
)
covariate <- mxMatrix(
  type = "Zero",
  nrow = 1,
  ncol = 1,
  name = "covariate"
)

Prepare the Model

In this parameterization, we fit the same model to all individuals (id) using a multi-group framework, assuming that the parameters remain fixed across individuals.

model <- mxModel(
  model = "CTVAR",
  phi,
  gamma,
  lambda,
  kappa,
  sigma,
  theta,
  mu0,
  sigma0,
  covariate,
  time,
  mxExpectationStateSpaceContinuousTime(
    A = "phi",
    B = "gamma",
    C = "lambda",
    D = "kappa",
    Q = "sigma",
    R = "theta",
    x0 = "mu0",
    P0 = "sigma0",
    u = "covariate",
    t = "time",
    dimnames = c("x", "m", "y")
  ),
  mxFitFunctionML(),
  mxData(
    observed = data,
    type = "raw"
  )
)
ids <- sort(
  unique(data[, "id"])
)
model_id <- lapply(
  X = ids,
  FUN = function(i,
                 data,
                 model) {
    return(
      mxModel(
        name = paste0("CTVAR", "_", i),
        model = model,
        mxData(
          observed = data[
            which(
              data[, "id"] == i
            ), ,
            drop = FALSE
          ],
          type = "raw"
        )
      )
    )
  },
  data = data,
  model = model
)

Fit the Model

fit <- mxTryHardctsem(
  model = mxModel(
    name = "CTVAR",
    model_id,
    mxFitFunctionMultigroup(
      paste0(
        "CTVAR",
        "_",
        ids
      )
    )
  ),
  extraTries = 1000
)
#> Running CTVAR with 27 parameters
#> 
#> Beginning initial fit attempt
#> Running CTVAR with 27 parameters
#> 
#>  Lowest minimum so far:  2176.87071212889
#> 
#> Solution found
#> 
#>  Solution found!  Final fit=2176.8707 (started at 2276.7509)  (1 attempt(s): 1 valid, 0 errors)
#>  Start values from best fit:
#> -0.469633097943292,0.480979436662968,-0.271144930394438,-0.108492958846069,-0.233084787767979,0.579655044136986,0.121502295445461,-0.0743526254508862,-0.573819308509521,0.294397331358657,0.0597425749324876,0.0483077801421585,-0.0767125109058171,0.00757282595532045,0.0918244085985979,0.199133514903907,0.211264230326455,0.191340809469612,-0.218807723002373,0.573571407991234,0.640524197606774,0.0663834450624793,0.0480089949288089,0.357386121201136,-0.380916208653524,0.194542015850014,2.89853105941126
summary(fit)
#> Summary of CTVAR 
#>  
#> free parameters:
#>          name         matrix   row   col     Estimate  Std.Error A lbound
#> 1     phi_1_1    CTVAR_1.phi eta_x eta_x -0.469633098 0.38714913     -1.5
#> 2     phi_2_1    CTVAR_1.phi eta_m eta_x  0.480979437 0.18010565     -1.5
#> 3     phi_3_1    CTVAR_1.phi eta_y eta_x -0.271144930 0.20890955     -1.5
#> 4     phi_1_2    CTVAR_1.phi eta_x eta_m -0.108492959 0.23527670     -1.5
#> 5     phi_2_2    CTVAR_1.phi eta_m eta_m -0.233084788 0.11116194     -1.5
#> 6     phi_3_2    CTVAR_1.phi eta_y eta_m  0.579655044 0.13645810     -1.5
#> 7     phi_1_3    CTVAR_1.phi eta_x eta_y  0.121502295 0.15751240     -1.5
#> 8     phi_2_3    CTVAR_1.phi eta_m eta_y -0.074352625 0.07370607     -1.5
#> 9     phi_3_3    CTVAR_1.phi eta_y eta_y -0.573819309 0.09164907     -1.5
#> 10  sigma_1_1  CTVAR_1.sigma eta_x eta_x  0.294397331 0.12081184        0
#> 11  sigma_2_1  CTVAR_1.sigma eta_x eta_m  0.059742575 0.04037450         
#> 12  sigma_2_2  CTVAR_1.sigma eta_m eta_m  0.048307780 0.02401624 !     0!
#> 13  sigma_3_1  CTVAR_1.sigma eta_x eta_y -0.076712511 0.04234992         
#> 14  sigma_3_2  CTVAR_1.sigma eta_m eta_y  0.007572826 0.02113105         
#> 15  sigma_3_3  CTVAR_1.sigma eta_y eta_y  0.091824409 0.03422524        0
#> 16  theta_1_1  CTVAR_1.theta     x     x  0.199133515 0.01820020        0
#> 17  theta_2_2  CTVAR_1.theta     m     m  0.211264230 0.01488856        0
#> 18  theta_3_3  CTVAR_1.theta     y     y  0.191340809 0.01404758        0
#> 19    mu0_1_1    CTVAR_1.mu0 eta_x   mu0 -0.218807723 0.16816689         
#> 20    mu0_2_1    CTVAR_1.mu0 eta_m   mu0  0.573571408 0.28117884         
#> 21    mu0_3_1    CTVAR_1.mu0 eta_y   mu0  0.640524198 0.76950280         
#> 22 sigma0_1_1 CTVAR_1.sigma0 eta_x eta_x  0.066383445 0.09450999        0
#> 23 sigma0_2_1 CTVAR_1.sigma0 eta_x eta_m  0.048008995 0.10778010         
#> 24 sigma0_2_2 CTVAR_1.sigma0 eta_m eta_m  0.357386121 0.24857019        0
#> 25 sigma0_3_1 CTVAR_1.sigma0 eta_x eta_y -0.380916209 0.34637400         
#> 26 sigma0_3_2 CTVAR_1.sigma0 eta_m eta_y  0.194542016 0.49953722         
#> 27 sigma0_3_3 CTVAR_1.sigma0 eta_y eta_y  2.898531059 1.86988934        0
#>    ubound
#> 1     1.5
#> 2     1.5
#> 3     1.5
#> 4     1.5
#> 5     1.5
#> 6     1.5
#> 7     1.5
#> 8     1.5
#> 9     1.5
#> 10       
#> 11       
#> 12       
#> 13       
#> 14       
#> 15       
#> 16       
#> 17       
#> 18       
#> 19       
#> 20       
#> 21       
#> 22       
#> 23       
#> 24       
#> 25       
#> 26       
#> 27       
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             27                   1473              2176.871
#>    Saturated:             NA                     NA                    NA
#> Independence:             NA                     NA                    NA
#> Number of observations/statistics: 500/1500
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:      -769.1293               2230.871                 2234.074
#> BIC:     -6977.2470               2344.665                 2258.965
#> CFI: NA 
#> TLI: 1   (also known as NNFI) 
#> RMSEA:  0  [95% CI (NA, NA)]
#> Prob(RMSEA <= 0.05): NA
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2025-02-20 21:17:06 
#> Wall clock time: 24.46378 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.13 
#> Need help?  See help(mxSummary)
coefs <- coef(fit)
vcovs <- vcov(fit)

Extract Matrices from the Fitted Model to use in cTMed

phi_names <- c(
  "phi_1_1", "phi_2_1", "phi_3_1",
  "phi_1_2", "phi_2_2", "phi_3_2",
  "phi_1_3", "phi_2_3", "phi_3_3"
)
sigma_names <- c(
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_1", "sigma_2_2", "sigma_3_2",
  "sigma_3_1", "sigma_3_2", "sigma_3_3"
)
sigma_vech_names <- c(
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_2", "sigma_3_2",
  "sigma_3_3"
)
theta_names <- c(
  "phi_1_1", "phi_2_1", "phi_3_1",
  "phi_1_2", "phi_2_2", "phi_3_2",
  "phi_1_3", "phi_2_3", "phi_3_3",
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_2", "sigma_3_2",
  "sigma_3_3"
)
phi <- matrix(
  data = coefs[phi_names],
  nrow = 3,
  ncol = 3
)
sigma <- matrix(
  data = coefs[sigma_names],
  nrow = 3,
  ncol = 3
)
theta <- coefs[theta_names]
vcov_phi_vec <- vcovs[phi_names, phi_names]
vcov_sigma_vech <- vcovs[sigma_vech_names, sigma_vech_names]
vcov_theta <- vcovs[theta_names, theta_names]

Estimated Drift Matrix with Corresponding Sampling Covariance Matrix

phi
#>            [,1]       [,2]        [,3]
#> [1,] -0.4696331 -0.1084930  0.12150230
#> [2,]  0.4809794 -0.2330848 -0.07435263
#> [3,] -0.2711449  0.5796550 -0.57381931
vcov_phi_vec
#>              phi_1_1      phi_2_1       phi_3_1      phi_1_2       phi_2_2
#> phi_1_1  0.149884446  0.019442765 -0.0264543952 -0.067196940 -0.0085429557
#> phi_2_1  0.019442765  0.032438046  0.0037159313 -0.005776780 -0.0147797147
#> phi_3_1 -0.026454395  0.003715931  0.0436431997  0.011722580 -0.0011680496
#> phi_1_2 -0.067196940 -0.005776780  0.0117225801  0.055355124  0.0061148915
#> phi_2_2 -0.008542956 -0.014779715 -0.0011680496  0.006114891  0.0123569762
#> phi_3_2  0.012867934 -0.003081525 -0.0201876586 -0.011418150  0.0019136149
#> phi_1_3  0.034537185  0.003067041 -0.0051365826 -0.024766042 -0.0024738588
#> phi_2_3  0.004132925  0.007046874  0.0004648646 -0.002429955 -0.0055880785
#> phi_3_3 -0.006626738  0.001331255  0.0091461824  0.004989733 -0.0009095608
#>               phi_3_2      phi_1_3       phi_2_3       phi_3_3
#> phi_1_1  0.0128679338  0.034537185  0.0041329251 -0.0066267381
#> phi_2_1 -0.0030815247  0.003067041  0.0070468741  0.0013312548
#> phi_3_1 -0.0201876586 -0.005136583  0.0004648646  0.0091461824
#> phi_1_2 -0.0114181495 -0.024766042 -0.0024299553  0.0049897334
#> phi_2_2  0.0019136149 -0.002473859 -0.0055880785 -0.0009095608
#> phi_3_2  0.0186208135  0.004510307 -0.0006387087 -0.0078702326
#> phi_1_3  0.0045103070  0.024810157  0.0028901996 -0.0049119984
#> phi_2_3 -0.0006387087  0.002890200  0.0054325849  0.0007397764
#> phi_3_3 -0.0078702326 -0.004911998  0.0007397764  0.0083995526

Process Noise Covariance Matrix with Corresponding Sampling Covariance Matrix

sigma
#>             [,1]        [,2]         [,3]
#> [1,]  0.29439733 0.059742575 -0.076712511
#> [2,]  0.05974257 0.048307780  0.007572826
#> [3,] -0.07671251 0.007572826  0.091824409
vcov_sigma_vech
#>               sigma_1_1     sigma_2_1     sigma_3_1     sigma_2_2     sigma_3_2
#> sigma_1_1  0.0145955018  2.188831e-03 -1.989020e-03  3.576194e-04 -2.489777e-04
#> sigma_2_1  0.0021888309  1.630100e-03 -3.754290e-05  4.305307e-04 -3.187041e-04
#> sigma_3_1 -0.0019890204 -3.754290e-05  1.793516e-03  5.891012e-05  2.308878e-04
#> sigma_2_2  0.0003576194  4.305307e-04  5.891012e-05  5.767800e-04  8.499908e-05
#> sigma_3_2 -0.0002489777 -3.187041e-04  2.308878e-04  8.499908e-05  4.465211e-04
#> sigma_3_3  0.0001281149  5.442322e-05 -6.234443e-04 -2.191944e-05  6.906819e-05
#>               sigma_3_3
#> sigma_1_1  1.281149e-04
#> sigma_2_1  5.442322e-05
#> sigma_3_1 -6.234443e-04
#> sigma_2_2 -2.191944e-05
#> sigma_3_2  6.906819e-05
#> sigma_3_3  1.171367e-03

Estimated Drift Matrix and Process Noise Covariance Matrix with Corresponding Sampling Covariance Matrix

theta
#>      phi_1_1      phi_2_1      phi_3_1      phi_1_2      phi_2_2      phi_3_2 
#> -0.469633098  0.480979437 -0.271144930 -0.108492959 -0.233084788  0.579655044 
#>      phi_1_3      phi_2_3      phi_3_3    sigma_1_1    sigma_2_1    sigma_3_1 
#>  0.121502295 -0.074352625 -0.573819309  0.294397331  0.059742575 -0.076712511 
#>    sigma_2_2    sigma_3_2    sigma_3_3 
#>  0.048307780  0.007572826  0.091824409
vcov_theta
#>                 phi_1_1       phi_2_1       phi_3_1       phi_1_2       phi_2_2
#> phi_1_1    1.498844e-01  0.0194427646 -0.0264543952 -0.0671969397 -8.542956e-03
#> phi_2_1    1.944276e-02  0.0324380465  0.0037159313 -0.0057767800 -1.477971e-02
#> phi_3_1   -2.645440e-02  0.0037159313  0.0436431997  0.0117225801 -1.168050e-03
#> phi_1_2   -6.719694e-02 -0.0057767800  0.0117225801  0.0553551237  6.114891e-03
#> phi_2_2   -8.542956e-03 -0.0147797147 -0.0011680496  0.0061148915  1.235698e-02
#> phi_3_2    1.286793e-02 -0.0030815247 -0.0201876586 -0.0114181495  1.913615e-03
#> phi_1_3    3.453718e-02  0.0030670410 -0.0051365826 -0.0247660425 -2.473859e-03
#> phi_2_3    4.132925e-03  0.0070468741  0.0004648646 -0.0024299553 -5.588079e-03
#> phi_3_3   -6.626738e-03  0.0013312548  0.0091461824  0.0049897334 -9.095608e-04
#> sigma_1_1 -3.753065e-02 -0.0058911663  0.0060223065  0.0141593672  2.125709e-03
#> sigma_2_1 -4.092461e-03 -0.0048540800 -0.0004555514 -0.0001070123  1.497035e-03
#> sigma_3_1  4.627567e-03 -0.0000644365 -0.0053800826 -0.0014738126  3.798997e-05
#> sigma_2_2 -4.553220e-04 -0.0006151725 -0.0002799013 -0.0003105556 -5.505724e-04
#> sigma_3_2  1.929390e-04  0.0011913035 -0.0001858181  0.0003444267 -4.829790e-04
#> sigma_3_3  2.455237e-05 -0.0003577351  0.0018901936 -0.0002624319  2.917148e-04
#>                 phi_3_2       phi_1_3       phi_2_3       phi_3_3     sigma_1_1
#> phi_1_1    0.0128679338  3.453718e-02  4.132925e-03 -6.626738e-03 -0.0375306535
#> phi_2_1   -0.0030815247  3.067041e-03  7.046874e-03  1.331255e-03 -0.0058911663
#> phi_3_1   -0.0201876586 -5.136583e-03  4.648646e-04  9.146182e-03  0.0060223065
#> phi_1_2   -0.0114181495 -2.476604e-02 -2.429955e-03  4.989733e-03  0.0141593672
#> phi_2_2    0.0019136149 -2.473859e-03 -5.588079e-03 -9.095608e-04  0.0021257094
#> phi_3_2    0.0186208135  4.510307e-03 -6.387087e-04 -7.870233e-03 -0.0024865465
#> phi_1_3    0.0045103070  2.481016e-02  2.890200e-03 -4.911998e-03 -0.0072674417
#> phi_2_3   -0.0006387087  2.890200e-03  5.432585e-03  7.397764e-04 -0.0010063249
#> phi_3_3   -0.0078702326 -4.911998e-03  7.397764e-04  8.399553e-03  0.0012881971
#> sigma_1_1 -0.0024865465 -7.267442e-03 -1.006325e-03  1.288197e-03  0.0145955018
#> sigma_2_1  0.0005776911 -2.901908e-04 -7.417505e-04 -1.819125e-04  0.0021888309
#> sigma_3_1  0.0018538361 -1.188467e-04 -1.569975e-04 -6.344679e-04 -0.0019890204
#> sigma_2_2 -0.0000053559  5.392112e-05  1.634474e-04 -4.109799e-05  0.0003576194
#> sigma_3_2 -0.0005005247 -2.508785e-04 -4.332547e-06  9.314361e-05 -0.0002489777
#> sigma_3_3 -0.0003870415  4.061610e-04 -2.480889e-04 -5.097955e-04  0.0001281149
#>               sigma_2_1     sigma_3_1     sigma_2_2     sigma_3_2     sigma_3_3
#> phi_1_1   -4.092461e-03  4.627567e-03 -4.553220e-04  1.929390e-04  2.455237e-05
#> phi_2_1   -4.854080e-03 -6.443650e-05 -6.151725e-04  1.191303e-03 -3.577351e-04
#> phi_3_1   -4.555514e-04 -5.380083e-03 -2.799013e-04 -1.858181e-04  1.890194e-03
#> phi_1_2   -1.070123e-04 -1.473813e-03 -3.105556e-04  3.444267e-04 -2.624319e-04
#> phi_2_2    1.497035e-03  3.798997e-05 -5.505724e-04 -4.829790e-04  2.917148e-04
#> phi_3_2    5.776911e-04  1.853836e-03 -5.355900e-06 -5.005247e-04 -3.870415e-04
#> phi_1_3   -2.901908e-04 -1.188467e-04  5.392112e-05 -2.508785e-04  4.061610e-04
#> phi_2_3   -7.417505e-04 -1.569975e-04  1.634474e-04 -4.332547e-06 -2.480889e-04
#> phi_3_3   -1.819125e-04 -6.344679e-04 -4.109799e-05  9.314361e-05 -5.097955e-04
#> sigma_1_1  2.188831e-03 -1.989020e-03  3.576194e-04 -2.489777e-04  1.281149e-04
#> sigma_2_1  1.630100e-03 -3.754290e-05  4.305307e-04 -3.187041e-04  5.442322e-05
#> sigma_3_1 -3.754290e-05  1.793516e-03  5.891012e-05  2.308878e-04 -6.234443e-04
#> sigma_2_2  4.305307e-04  5.891012e-05  5.767800e-04  8.499908e-05 -2.191944e-05
#> sigma_3_2 -3.187041e-04  2.308878e-04  8.499908e-05  4.465211e-04  6.906819e-05
#> sigma_3_3  5.442322e-05 -6.234443e-04 -2.191944e-05  6.906819e-05  1.171367e-03

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 307–324. https://doi.org/10.1080/10705511.2017.1369354
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/