Skip to contents

Data Generation Using the SimSSMOUFixed Function from the simStateSpace Package

n
#> [1] 50
time
#> [1] 100
delta_t
#> [1] 0.1
mu0
#> [1] 0 0 0
sigma0
#>      [,1] [,2] [,3]
#> [1,]  1.0  0.2  0.2
#> [2,]  0.2  1.0  0.2
#> [3,]  0.2  0.2  1.0
sigma0_l # sigma0_l <- t(chol(sigma0))
#>      [,1]      [,2]      [,3]
#> [1,]  1.0 0.0000000 0.0000000
#> [2,]  0.2 0.9797959 0.0000000
#> [3,]  0.2 0.1632993 0.9660918
mu
#> [1] 0 0 0
phi
#>        [,1]   [,2]   [,3]
#> [1,] -0.357  0.000  0.000
#> [2,]  0.771 -0.511  0.000
#> [3,] -0.450  0.729 -0.693
sigma
#>             [,1]       [,2]        [,3]
#> [1,]  0.24455556 0.02201587 -0.05004762
#> [2,]  0.02201587 0.07067800  0.01539456
#> [3,] -0.05004762 0.01539456  0.07553061
sigma_l # sigma_l <- t(chol(sigma))
#>             [,1]      [,2]     [,3]
#> [1,]  0.49452559 0.0000000 0.000000
#> [2,]  0.04451917 0.2620993 0.000000
#> [3,] -0.10120330 0.0759256 0.243975
nu
#> [1] 0 0 0
lambda
#>      [,1] [,2] [,3]
#> [1,]    1    0    0
#> [2,]    0    1    0
#> [3,]    0    0    1
theta
#>      [,1] [,2] [,3]
#> [1,]  0.2  0.0  0.0
#> [2,]  0.0  0.2  0.0
#> [3,]  0.0  0.0  0.2
theta_l # theta_l <- t(chol(theta))
#>           [,1]      [,2]      [,3]
#> [1,] 0.4472136 0.0000000 0.0000000
#> [2,] 0.0000000 0.4472136 0.0000000
#> [3,] 0.0000000 0.0000000 0.4472136
library(simStateSpace)
sim <- SimSSMOUFixed(
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_l = theta_l,
  type = 0
)
data <- as.data.frame(sim)
colnames(data) <- c("id", "time", "x", "m", "y")
head(data)
#>   id time          x          m        y
#> 1  1  0.0 -0.3504435 0.41877429 2.611996
#> 2  1  0.1 -0.5920330 1.07433208 1.669272
#> 3  1  0.2 -0.7619855 1.21483834 2.369837
#> 4  1  0.3 -1.6964652 0.21209722 2.128531
#> 5  1  0.4 -1.2282686 0.09950326 1.891140
#> 6  1  0.5  0.1433985 0.66784226 2.036033

Model Fitting

We use the OpenMx package to fit the continuous-time vector autoregressive model.

Prepare the Initial Condition

mu0 <- mxMatrix(
  type = "Full",
  nrow = 3,
  ncol = 1,
  free = TRUE,
  values = matrix(
    data = c(
      0, 0, 0
    ),
    nrow = 3,
    ncol = 1
  ),
  labels = matrix(
    data = c(
      "mu0_1_1", "mu0_2_1", "mu0_3_1"
    ),
    nrow = 3,
    ncol = 1
  ),
  lbound = NA,
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    "mu0"
  ),
  name = "mu0"
)
sigma0 <- mxMatrix(
  type = "Symm",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = matrix(
    data = c(
      1.0, 0.2, 0.2,
      0.2, 1.0, 0.2,
      0.2, 0.2, 1.0
    ),
    nrow = 3,
    ncol = 3
  ),
  labels = matrix(
    data = c(
      "sigma0_1_1", "sigma0_2_1", "sigma0_3_1",
      "sigma0_2_1", "sigma0_2_2", "sigma0_3_2",
      "sigma0_3_1", "sigma0_3_2", "sigma0_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = matrix(
    data = c(
      0, NA, NA,
      NA, 0, NA,
      NA, NA, 0
    ),
    nrow = 3,
    ncol = 3
  ),
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "sigma0"
)

Prepare the Measurement Model

lambda <- mxMatrix(
  type = "Diag",
  nrow = 3,
  ncol = 3,
  free = FALSE,
  values = 1,
  labels = NA,
  lbound = NA,
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("x", "m", "y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "lambda"
)

Prepare the Dynamic Model

phi <- mxMatrix(
  type = "Full",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = matrix(
    data = c(
      -0.2, 0.0, 0.0,
      0.0, -0.2, 0.0,
      0.0, 0.0, -0.2
    ),
    nrow = 3,
    ncol = 3
  ),
  labels = matrix(
    data = c(
      "phi_1_1", "phi_2_1", "phi_3_1",
      "phi_1_2", "phi_2_2", "phi_3_2",
      "phi_1_3", "phi_2_3", "phi_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = -1.5,
  ubound = 1.5,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "phi"
)

Prepare the Noise Matrices

sigma <- mxMatrix(
  type = "Symm",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = 0.2 * diag(3),
  labels = matrix(
    data = c(
      "sigma_1_1", "sigma_2_1", "sigma_3_1",
      "sigma_2_1", "sigma_2_2", "sigma_3_2",
      "sigma_3_1", "sigma_3_2", "sigma_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = matrix(
    data = c(
      0, NA, NA,
      NA, 0, NA,
      NA, NA, 0
    ),
    nrow = 3,
    ncol = 3
  ),
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("eta_x", "eta_m", "eta_y"),
    c("eta_x", "eta_m", "eta_y")
  ),
  name = "sigma"
)
theta <- mxMatrix(
  type = "Diag",
  nrow = 3,
  ncol = 3,
  free = TRUE,
  values = 0.2 * diag(3),
  labels = matrix(
    data = c(
      "theta_1_1", "fixed", "fixed",
      "fixed", "theta_2_2", "fixed",
      "fixed", "fixed", "theta_3_3"
    ),
    nrow = 3,
    ncol = 3
  ),
  lbound = matrix(
    data = c(
      0, NA, NA,
      NA, 0, NA,
      NA, NA, 0
    ),
    nrow = 3,
    ncol = 3
  ),
  ubound = NA,
  byrow = FALSE,
  dimnames = list(
    c("x", "m", "y"),
    c("x", "m", "y")
  ),
  name = "theta"
)

Prepare Miscellaneous Matrices

time <- mxMatrix(
  type = "Full",
  nrow = 1,
  ncol = 1,
  free = FALSE,
  labels = "data.time",
  name = "time"
)
gamma <- mxMatrix(
  type = "Zero",
  nrow = 3,
  ncol = 1,
  name = "gamma"
)
kappa <- mxMatrix(
  type = "Zero",
  nrow = 3,
  ncol = 1,
  name = "kappa"
)
covariate <- mxMatrix(
  type = "Zero",
  nrow = 1,
  ncol = 1,
  name = "covariate"
)

Prepare the Model

In this parameterization, we fit the same model to all individuals (id) using a multi-group framework, assuming that the parameters remain fixed across individuals.

model <- mxModel(
  model = "CTVAR",
  phi,
  gamma,
  lambda,
  kappa,
  sigma,
  theta,
  mu0,
  sigma0,
  covariate,
  time,
  mxExpectationStateSpaceContinuousTime(
    A = "phi",
    B = "gamma",
    C = "lambda",
    D = "kappa",
    Q = "sigma",
    R = "theta",
    x0 = "mu0",
    P0 = "sigma0",
    u = "covariate",
    t = "time",
    dimnames = c("x", "m", "y")
  ),
  mxFitFunctionML(),
  mxData(
    observed = data,
    type = "raw"
  )
)
ids <- sort(
  unique(data[, "id"])
)
model_id <- lapply(
  X = ids,
  FUN = function(i,
                 data,
                 model) {
    return(
      mxModel(
        name = paste0("CTVAR", "_", i),
        model = model,
        mxData(
          observed = data[
            which(
              data[, "id"] == i
            ), ,
            drop = FALSE
          ],
          type = "raw"
        )
      )
    )
  },
  data = data,
  model = model
)

Fit the Model

fit <- mxTryHardctsem(
  model = mxModel(
    name = "CTVAR",
    model_id,
    mxFitFunctionMultigroup(
      paste0(
        "CTVAR",
        "_",
        ids
      )
    )
  ),
  extraTries = 1000
)
#> Running CTVAR with 27 parameters
#> 
#> Beginning initial fit attempt
#> Running CTVAR with 27 parameters
#> 
#>  Lowest minimum so far:  21626.5696149473
#> 
#> Solution found
#> 
#>  Solution found!  Final fit=21626.57 (started at 22577.553)  (1 attempt(s): 1 valid, 0 errors)
#>  Start values from best fit:
#> -0.293790977184311,0.824373596793956,-0.454352942782624,-0.0719257333908259,-0.568941561106352,0.707694577826676,0.0257889208202681,0.0826903190175992,-0.687497461963515,0.230160009853211,0.0279936282895708,0.0788922447163538,-0.0678961700430469,0.00451046215224979,0.0843652757698069,0.201040220854235,0.191651067931051,0.197460049266135,-0.06844430614785,0.0846200049615241,0.11577024893487,0.942751969308445,0.161848184696176,1.4897646946326,0.103298448260435,-0.100426750441556,0.946206282100809
summary(fit)
#> Summary of CTVAR 
#>  
#> free parameters:
#>          name         matrix   row   col     Estimate   Std.Error A lbound
#> 1     phi_1_1    CTVAR_1.phi eta_x eta_x -0.293790977 0.082131220     -1.5
#> 2     phi_2_1    CTVAR_1.phi eta_m eta_x  0.824373597 0.056712190     -1.5
#> 3     phi_3_1    CTVAR_1.phi eta_y eta_x -0.454352943 0.057712619     -1.5
#> 4     phi_1_2    CTVAR_1.phi eta_x eta_m -0.071925733 0.068460953     -1.5
#> 5     phi_2_2    CTVAR_1.phi eta_m eta_m -0.568941561 0.048328345     -1.5
#> 6     phi_3_2    CTVAR_1.phi eta_y eta_m  0.707694578 0.048682892     -1.5
#> 7     phi_1_3    CTVAR_1.phi eta_x eta_y  0.025788921 0.062371709     -1.5
#> 8     phi_2_3    CTVAR_1.phi eta_m eta_y  0.082690319 0.043347036     -1.5
#> 9     phi_3_3    CTVAR_1.phi eta_y eta_y -0.687497462 0.044106637     -1.5
#> 10  sigma_1_1  CTVAR_1.sigma eta_x eta_x  0.230160010 0.022629412        0
#> 11  sigma_2_1  CTVAR_1.sigma eta_x eta_m  0.027993628 0.009999226         
#> 12  sigma_2_2  CTVAR_1.sigma eta_m eta_m  0.078892245 0.009570698        0
#> 13  sigma_3_1  CTVAR_1.sigma eta_x eta_y -0.067896170 0.010706785         
#> 14  sigma_3_2  CTVAR_1.sigma eta_m eta_y  0.004510462 0.006768976         
#> 15  sigma_3_3  CTVAR_1.sigma eta_y eta_y  0.084365276 0.010385763        0
#> 16  theta_1_1  CTVAR_1.theta     x     x  0.201040221 0.005103784        0
#> 17  theta_2_2  CTVAR_1.theta     m     m  0.191651068 0.004371682        0
#> 18  theta_3_3  CTVAR_1.theta     y     y  0.197460049 0.004520322        0
#> 19    mu0_1_1    CTVAR_1.mu0 eta_x   mu0 -0.068444306 0.141833181         
#> 20    mu0_2_1    CTVAR_1.mu0 eta_m   mu0  0.084620005 0.175303157         
#> 21    mu0_3_1    CTVAR_1.mu0 eta_y   mu0  0.115770249 0.141100567         
#> 22 sigma0_1_1 CTVAR_1.sigma0 eta_x eta_x  0.942751969 0.202350021        0
#> 23 sigma0_2_1 CTVAR_1.sigma0 eta_x eta_m  0.161848185 0.178506451         
#> 24 sigma0_2_2 CTVAR_1.sigma0 eta_m eta_m  1.489764695 0.309416239        0
#> 25 sigma0_3_1 CTVAR_1.sigma0 eta_x eta_y  0.103298448 0.143255187 !       
#> 26 sigma0_3_2 CTVAR_1.sigma0 eta_m eta_y -0.100426750 0.177014576 !       
#> 27 sigma0_3_3 CTVAR_1.sigma0 eta_y eta_y  0.946206282 0.201001057 !      0
#>    ubound
#> 1     1.5
#> 2     1.5
#> 3     1.5
#> 4     1.5
#> 5     1.5
#> 6     1.5
#> 7     1.5
#> 8     1.5
#> 9     1.5
#> 10       
#> 11       
#> 12       
#> 13       
#> 14       
#> 15       
#> 16       
#> 17       
#> 18       
#> 19       
#> 20       
#> 21       
#> 22       
#> 23       
#> 24       
#> 25       
#> 26       
#> 27       
#> 
#> Model Statistics: 
#>                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
#>        Model:             27                  14973              21626.57
#>    Saturated:             NA                     NA                    NA
#> Independence:             NA                     NA                    NA
#> Number of observations/statistics: 5000/15000
#> 
#> Information Criteria: 
#>       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
#> AIC:       -8319.43               21680.57                 21680.87
#> BIC:     -105901.36               21856.53                 21770.74
#> CFI: NA 
#> TLI: 1   (also known as NNFI) 
#> RMSEA:  0  [95% CI (NA, NA)]
#> Prob(RMSEA <= 0.05): NA
#> To get additional fit indices, see help(mxRefModels)
#> timestamp: 2025-01-19 00:03:08 
#> Wall clock time: 211.1898 secs 
#> optimizer:  SLSQP 
#> OpenMx version number: 2.21.13 
#> Need help?  See help(mxSummary)
coefs <- coef(fit)
vcovs <- vcov(fit)

Extract Matrices from the Fitted Model to use in cTMed

phi_names <- c(
  "phi_1_1", "phi_2_1", "phi_3_1",
  "phi_1_2", "phi_2_2", "phi_3_2",
  "phi_1_3", "phi_2_3", "phi_3_3"
)
sigma_names <- c(
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_1", "sigma_2_2", "sigma_3_2",
  "sigma_3_1", "sigma_3_2", "sigma_3_3"
)
sigma_vech_names <- c(
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_2", "sigma_3_2",
  "sigma_3_3"
)
theta_names <- c(
  "phi_1_1", "phi_2_1", "phi_3_1",
  "phi_1_2", "phi_2_2", "phi_3_2",
  "phi_1_3", "phi_2_3", "phi_3_3",
  "sigma_1_1", "sigma_2_1", "sigma_3_1",
  "sigma_2_2", "sigma_3_2",
  "sigma_3_3"
)
phi <- matrix(
  data = coefs[phi_names],
  nrow = 3,
  ncol = 3
)
sigma <- matrix(
  data = coefs[sigma_names],
  nrow = 3,
  ncol = 3
)
theta <- coefs[theta_names]
vcov_phi_vec <- vcovs[phi_names, phi_names]
vcov_sigma_vech <- vcovs[sigma_vech_names, sigma_vech_names]
vcov_theta <- vcovs[theta_names, theta_names]

Estimated Drift Matrix with Corresponding Sampling Covariance Matrix

phi
#>            [,1]        [,2]        [,3]
#> [1,] -0.2937910 -0.07192573  0.02578892
#> [2,]  0.8243736 -0.56894156  0.08269032
#> [3,] -0.4543529  0.70769458 -0.68749746
vcov_phi_vec
#>               phi_1_1       phi_2_1       phi_3_1       phi_1_2       phi_2_2
#> phi_1_1  0.0067455373  3.317282e-04 -0.0014367602 -0.0048526817 -2.768309e-04
#> phi_2_1  0.0003317282  3.216272e-03 -0.0001187893 -0.0001307222 -2.404128e-03
#> phi_3_1 -0.0014367602 -1.187893e-04  0.0033307463  0.0009783394  1.079355e-04
#> phi_1_2 -0.0048526817 -1.307222e-04  0.0009783394  0.0046869020  1.925602e-04
#> phi_2_2 -0.0002768309 -2.404128e-03  0.0001079355  0.0001925602  2.335629e-03
#> phi_3_2  0.0010357869  3.898403e-05 -0.0024541083 -0.0009969575 -8.235956e-05
#> phi_1_3  0.0033191641  4.946738e-05 -0.0006122438 -0.0033953975 -8.705324e-05
#> phi_2_3  0.0002242364  1.673695e-03 -0.0001006422 -0.0001920905 -1.714674e-03
#> phi_3_3 -0.0007324751 -7.970003e-06  0.0016913327  0.0007497396  3.129422e-05
#>               phi_3_2       phi_1_3       phi_2_3       phi_3_3
#> phi_1_1  1.035787e-03  3.319164e-03  2.242364e-04 -7.324751e-04
#> phi_2_1  3.898403e-05  4.946738e-05  1.673695e-03 -7.970003e-06
#> phi_3_1 -2.454108e-03 -6.122438e-04 -1.006422e-04  1.691333e-03
#> phi_1_2 -9.969575e-04 -3.395397e-03 -1.920905e-04  7.497396e-04
#> phi_2_2 -8.235956e-05 -8.705324e-05 -1.714674e-03  3.129422e-05
#> phi_3_2  2.370024e-03  6.700936e-04  1.029138e-04 -1.736606e-03
#> phi_1_3  6.700936e-04  3.890230e-03  1.809956e-04 -8.698817e-04
#> phi_2_3  1.029138e-04  1.809956e-04  1.878966e-03 -9.767929e-05
#> phi_3_3 -1.736606e-03 -8.698817e-04 -9.767929e-05  1.945395e-03

Process Noise Covariance Matrix with Corresponding Sampling Covariance Matrix

sigma
#>             [,1]        [,2]         [,3]
#> [1,]  0.23016001 0.027993628 -0.067896170
#> [2,]  0.02799363 0.078892245  0.004510462
#> [3,] -0.06789617 0.004510462  0.084365276
vcov_sigma_vech
#>               sigma_1_1     sigma_2_1     sigma_3_1     sigma_2_2     sigma_3_2
#> sigma_1_1  5.120903e-04  2.212062e-05 -9.553480e-05  6.950907e-07 -4.527137e-06
#> sigma_2_1  2.212062e-05  9.998452e-05 -7.118632e-06  1.111751e-05 -2.361805e-05
#> sigma_3_1 -9.553480e-05 -7.118632e-06  1.146352e-04 -1.030557e-06  7.394898e-06
#> sigma_2_2  6.950907e-07  1.111751e-05 -1.030557e-06  9.159826e-05 -5.224564e-06
#> sigma_3_2 -4.527137e-06 -2.361805e-05  7.394898e-06 -5.224564e-06  4.581903e-05
#> sigma_3_3  1.719521e-05  3.460633e-06 -4.884301e-05  1.323807e-08 -5.945401e-06
#>               sigma_3_3
#> sigma_1_1  1.719521e-05
#> sigma_2_1  3.460633e-06
#> sigma_3_1 -4.884301e-05
#> sigma_2_2  1.323807e-08
#> sigma_3_2 -5.945401e-06
#> sigma_3_3  1.078641e-04

Estimated Drift Matrix and Process Noise Covariance Matrix with Corresponding Sampling Covariance Matrix

theta
#>      phi_1_1      phi_2_1      phi_3_1      phi_1_2      phi_2_2      phi_3_2 
#> -0.293790977  0.824373597 -0.454352943 -0.071925733 -0.568941561  0.707694578 
#>      phi_1_3      phi_2_3      phi_3_3    sigma_1_1    sigma_2_1    sigma_3_1 
#>  0.025788921  0.082690319 -0.687497462  0.230160010  0.027993628 -0.067896170 
#>    sigma_2_2    sigma_3_2    sigma_3_3 
#>  0.078892245  0.004510462  0.084365276
vcov_theta
#>                 phi_1_1       phi_2_1       phi_3_1       phi_1_2       phi_2_2
#> phi_1_1    6.745537e-03  3.317282e-04 -1.436760e-03 -4.852682e-03 -2.768309e-04
#> phi_2_1    3.317282e-04  3.216272e-03 -1.187893e-04 -1.307222e-04 -2.404128e-03
#> phi_3_1   -1.436760e-03 -1.187893e-04  3.330746e-03  9.783394e-04  1.079355e-04
#> phi_1_2   -4.852682e-03 -1.307222e-04  9.783394e-04  4.686902e-03  1.925602e-04
#> phi_2_2   -2.768309e-04 -2.404128e-03  1.079355e-04  1.925602e-04  2.335629e-03
#> phi_3_2    1.035787e-03  3.898403e-05 -2.454108e-03 -9.969575e-04 -8.235956e-05
#> phi_1_3    3.319164e-03  4.946738e-05 -6.122438e-04 -3.395397e-03 -8.705324e-05
#> phi_2_3    2.242364e-04  1.673695e-03 -1.006422e-04 -1.920905e-04 -1.714674e-03
#> phi_3_3   -7.324751e-04 -7.970003e-06  1.691333e-03  7.497396e-04  3.129422e-05
#> sigma_1_1 -1.135926e-03 -1.287321e-04  2.704873e-04  6.645507e-04  7.828536e-05
#> sigma_2_1  9.482650e-05 -2.294916e-04 -3.697441e-05 -1.408572e-04  1.215205e-04
#> sigma_3_1  1.231851e-04  1.944905e-05 -2.546840e-04 -1.948356e-05 -4.214459e-06
#> sigma_2_2  1.513404e-05  1.013826e-04  5.265327e-06 -1.698422e-05 -1.365820e-04
#> sigma_3_2 -2.439754e-05  2.731052e-05  5.101169e-05  3.501419e-05  9.131412e-06
#> sigma_3_3 -1.847835e-06 -1.296036e-05  4.433097e-05 -2.033872e-05  5.755900e-06
#>                 phi_3_2       phi_1_3       phi_2_3       phi_3_3     sigma_1_1
#> phi_1_1    1.035787e-03  3.319164e-03  2.242364e-04 -7.324751e-04 -1.135926e-03
#> phi_2_1    3.898403e-05  4.946738e-05  1.673695e-03 -7.970003e-06 -1.287321e-04
#> phi_3_1   -2.454108e-03 -6.122438e-04 -1.006422e-04  1.691333e-03  2.704873e-04
#> phi_1_2   -9.969575e-04 -3.395397e-03 -1.920905e-04  7.497396e-04  6.645507e-04
#> phi_2_2   -8.235956e-05 -8.705324e-05 -1.714674e-03  3.129422e-05  7.828536e-05
#> phi_3_2    2.370024e-03  6.700936e-04  1.029138e-04 -1.736606e-03 -1.636432e-04
#> phi_1_3    6.700936e-04  3.890230e-03  1.809956e-04 -8.698817e-04 -3.376716e-04
#> phi_2_3    1.029138e-04  1.809956e-04  1.878966e-03 -9.767929e-05 -4.357517e-05
#> phi_3_3   -1.736606e-03 -8.698817e-04 -9.767929e-05  1.945395e-03  8.970662e-05
#> sigma_1_1 -1.636432e-04 -3.376716e-04 -4.357517e-05  8.970662e-05  5.120903e-04
#> sigma_2_1  4.519977e-05  9.543735e-05 -5.425218e-05 -3.058552e-05  2.212062e-05
#> sigma_3_1  1.294832e-04 -9.286613e-05 -1.110211e-05 -3.082170e-05 -9.553480e-05
#> sigma_2_2 -5.210923e-06  1.212395e-05  8.853011e-05  3.283791e-06  6.950907e-07
#> sigma_3_2 -6.830352e-05 -2.747487e-05 -4.766731e-05  4.404841e-05 -4.527137e-06
#> sigma_3_3  2.871678e-05  5.372761e-05  4.398002e-06 -1.163939e-04  1.719521e-05
#>               sigma_2_1     sigma_3_1     sigma_2_2     sigma_3_2     sigma_3_3
#> phi_1_1    9.482650e-05  1.231851e-04  1.513404e-05 -2.439754e-05 -1.847835e-06
#> phi_2_1   -2.294916e-04  1.944905e-05  1.013826e-04  2.731052e-05 -1.296036e-05
#> phi_3_1   -3.697441e-05 -2.546840e-04  5.265327e-06  5.101169e-05  4.433097e-05
#> phi_1_2   -1.408572e-04 -1.948356e-05 -1.698422e-05  3.501419e-05 -2.033872e-05
#> phi_2_2    1.215205e-04 -4.214459e-06 -1.365820e-04  9.131412e-06  5.755900e-06
#> phi_3_2    4.519977e-05  1.294832e-04 -5.210923e-06 -6.830352e-05  2.871678e-05
#> phi_1_3    9.543735e-05 -9.286613e-05  1.212395e-05 -2.747487e-05  5.372761e-05
#> phi_2_3   -5.425218e-05 -1.110211e-05  8.853011e-05 -4.766731e-05  4.398002e-06
#> phi_3_3   -3.058552e-05 -3.082170e-05  3.283791e-06  4.404841e-05 -1.163939e-04
#> sigma_1_1  2.212062e-05 -9.553480e-05  6.950907e-07 -4.527137e-06  1.719521e-05
#> sigma_2_1  9.998452e-05 -7.118632e-06  1.111751e-05 -2.361805e-05  3.460633e-06
#> sigma_3_1 -7.118632e-06  1.146352e-04 -1.030557e-06  7.394898e-06 -4.884301e-05
#> sigma_2_2  1.111751e-05 -1.030557e-06  9.159826e-05 -5.224564e-06  1.323807e-08
#> sigma_3_2 -2.361805e-05  7.394898e-06 -5.224564e-06  4.581903e-05 -5.945401e-06
#> sigma_3_3  3.460633e-06 -4.884301e-05  1.323807e-08 -5.945401e-06  1.078641e-04

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 307–324. https://doi.org/10.1080/10705511.2017.1369354
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/