Parametric Bootstrap for the Vector Autoregressive Model (Fixed Parameters)
Source:R/bootStateSpace-pb-ssm-var-fixed.R
PBSSMVARFixed.Rd
This function simulates data from
a vector autoregressive model
using a state-space model parameterization
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMVARFixed(
R,
path,
prefix,
n,
time,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
type = 0,
x = NULL,
gamma = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL
)
Arguments
- R
Positive integer. Number of bootstrap samples.
- path
Path to a directory to store bootstrap samples and estimates.
- prefix
Character string. Prefix used for the file names for the bootstrap samples and estimates.
- n
Positive integer. Number of individuals.
- time
Positive integer. Number of time points.
- mu0
Numeric vector. Mean of initial latent variable values (\(\boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}\)).
- sigma0_l
Numeric matrix. Cholesky factorization (
t(chol(sigma0))
) of the covariance matrix of initial latent variable values (\(\boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0}\)).- alpha
Numeric vector. Vector of constant values for the dynamic model (\(\boldsymbol{\alpha}\)).
- beta
Numeric matrix. Transition matrix relating the values of the latent variables at the previous to the current time point (\(\boldsymbol{\beta}\)).
- psi_l
Numeric matrix. Cholesky factorization (
t(chol(psi))
) of the covariance matrix of the process noise (\(\boldsymbol{\Psi}\)).- type
Integer. State space model type. See Details for more information.
- x
List. Each element of the list is a matrix of covariates for each individual
i
inn
. The number of columns in each matrix should be equal totime
.- gamma
Numeric matrix. Matrix linking the covariates to the latent variables at current time point (\(\boldsymbol{\Gamma}\)).
- mu0_fixed
Logical. If
mu0_fixed = TRUE
, fix the initial mean vector tomu0
. Ifmu0_fixed = FALSE
,mu0
is estimated.- sigma0_fixed
Logical. If
sigma0_fixed = TRUE
, fix the initial covariance matrix totcrossprod(sigma0_l)
. Ifsigma0_fixed = FALSE
,sigma0
is estimated.- alpha_level
Numeric vector. Significance level \(\alpha\).
- optimization_flag
a flag (TRUE/FALSE) indicating whether optimization is to be done.
- hessian_flag
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.
- verbose
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed
- weight_flag
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual
- debug_flag
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes
- perturb_flag
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting.
- xtol_rel
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- stopval
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ftol_rel
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ftol_abs
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- maxeval
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- maxtime
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ncores
Positive integer. Number of cores to use. If
ncores = NULL
, use a single core. Consider using multiple cores when number of bootstrap samplesR
is a large value.- seed
Random seed.
Value
Returns an object
of class bootstatespace
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(\boldsymbol{\hat{\theta}}\).
- vcov
Sampling variance-covariance matrix of \(\boldsymbol{\hat{\theta}}\).
- est
Vector of estimated \(\boldsymbol{\hat{\theta}}\).
- fun
Function used ("PBSSMVARFixed").
- method
Bootstrap method used ("parametric").
Details
Type 0
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\eta}_{i, t} $$ where \(\mathbf{y}_{i, t}\) represents a vector of observed variables and \(\boldsymbol{\eta}_{i, t}\) a vector of latent variables for individual \(i\) and time \(t\). Since the observed and latent variables are equal, we only generate data from the dynamic structure.
The dynamic structure is given by $$ \boldsymbol{\eta}_{i, t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{i, t - 1} + \boldsymbol{\zeta}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\zeta}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Psi} \right) $$ where \(\boldsymbol{\eta}_{i, t}\), \(\boldsymbol{\eta}_{i, t - 1}\), and \(\boldsymbol{\zeta}_{i, t}\) are random variables, and \(\boldsymbol{\alpha}\), \(\boldsymbol{\beta}\), and \(\boldsymbol{\Psi}\) are model parameters. Here, \(\boldsymbol{\eta}_{i, t}\) is a vector of latent variables at time \(t\) and individual \(i\), \(\boldsymbol{\eta}_{i, t - 1}\) represents a vector of latent variables at time \(t - 1\) and individual \(i\), and \(\boldsymbol{\zeta}_{i, t}\) represents a vector of dynamic noise at time \(t\) and individual \(i\). \(\boldsymbol{\alpha}\) denotes a vector of intercepts, \(\boldsymbol{\beta}\) a matrix of autoregression and cross regression coefficients, and \(\boldsymbol{\Psi}\) the covariance matrix of \(\boldsymbol{\zeta}_{i, t}\).
An alternative representation of the dynamic noise is given by $$ \boldsymbol{\zeta}_{i, t} = \boldsymbol{\Psi}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) $$ where \( \left( \boldsymbol{\Psi}^{\frac{1}{2}} \right) \left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Psi} . \)
Type 1
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\eta}_{i, t} . $$
The dynamic structure is given by $$ \boldsymbol{\eta}_{i, t} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\eta}_{i, t - 1} + \boldsymbol{\Gamma} \mathbf{x}_{i, t} + \boldsymbol{\zeta}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\zeta}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Psi} \right) $$ where \(\mathbf{x}_{i, t}\) represents a vector of covariates at time \(t\) and individual \(i\), and \(\boldsymbol{\Gamma}\) the coefficient matrix linking the covariates to the latent variables.
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See also
Other Bootstrap for State Space Models Functions:
PBSSMFixed()
,
PBSSMLinSDEFixed()
,
PBSSMOUFixed()
Examples
# \donttest{
# prepare parameters
## number of individuals
n <- 5
## time points
time <- 50
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))
path <- tempdir()
pb <- PBSSMVARFixed(
R = 10L, # use at least 1000 in actual research
path = path,
prefix = "var",
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
type = 0,
ncores = 1, # consider using multiple cores
seed = 42
)
print(pb)
#> Call:
#> PBSSMVARFixed(R = 10L, path = path, prefix = "var", n = n, time = time,
#> mu0 = mu0, sigma0_l = sigma0_l, alpha = alpha, beta = beta,
#> psi_l = psi_l, type = 0, ncores = 1, seed = 42)
#>
#> Parametric bootstrap confidence intervals.
#> type = "pc"
#> est se R 2.5% 97.5%
#> beta_1_1 0.500 0.0479 10 0.4116 0.5553
#> beta_2_1 0.000 0.0430 10 -0.0404 0.0828
#> beta_3_1 0.000 0.0719 10 -0.0782 0.1313
#> beta_1_2 0.000 0.0697 10 -0.0681 0.1182
#> beta_2_2 0.500 0.0546 10 0.4440 0.6032
#> beta_3_2 0.000 0.0371 10 -0.0102 0.0967
#> beta_1_3 0.000 0.0450 10 -0.0725 0.0522
#> beta_2_3 0.000 0.0411 10 -0.0574 0.0705
#> beta_3_3 0.500 0.0824 10 0.3106 0.5658
#> psi_1_1 0.001 0.0001 10 0.0009 0.0011
#> psi_2_2 0.001 0.0001 10 0.0009 0.0011
#> psi_3_3 0.001 0.0001 10 0.0009 0.0011
#> mu0_1_1 0.000 0.0083 10 -0.0094 0.0114
#> mu0_2_1 0.000 0.0103 10 -0.0108 0.0207
#> mu0_3_1 0.000 0.0132 10 -0.0246 0.0155
#> sigma0_1_1 0.001 0.0005 10 0.0002 0.0018
#> sigma0_2_2 0.001 0.0012 10 0.0004 0.0036
#> sigma0_3_3 0.001 0.0006 10 0.0005 0.0022
summary(pb)
#> Call:
#> PBSSMVARFixed(R = 10L, path = path, prefix = "var", n = n, time = time,
#> mu0 = mu0, sigma0_l = sigma0_l, alpha = alpha, beta = beta,
#> psi_l = psi_l, type = 0, ncores = 1, seed = 42)
#> est se R 2.5% 97.5%
#> beta_1_1 0.500 0.0479 10 0.4116 0.5553
#> beta_2_1 0.000 0.0430 10 -0.0404 0.0828
#> beta_3_1 0.000 0.0719 10 -0.0782 0.1313
#> beta_1_2 0.000 0.0697 10 -0.0681 0.1182
#> beta_2_2 0.500 0.0546 10 0.4440 0.6032
#> beta_3_2 0.000 0.0371 10 -0.0102 0.0967
#> beta_1_3 0.000 0.0450 10 -0.0725 0.0522
#> beta_2_3 0.000 0.0411 10 -0.0574 0.0705
#> beta_3_3 0.500 0.0824 10 0.3106 0.5658
#> psi_1_1 0.001 0.0001 10 0.0009 0.0011
#> psi_2_2 0.001 0.0001 10 0.0009 0.0011
#> psi_3_3 0.001 0.0001 10 0.0009 0.0011
#> mu0_1_1 0.000 0.0083 10 -0.0094 0.0114
#> mu0_2_1 0.000 0.0103 10 -0.0108 0.0207
#> mu0_3_1 0.000 0.0132 10 -0.0246 0.0155
#> sigma0_1_1 0.001 0.0005 10 0.0002 0.0018
#> sigma0_2_2 0.001 0.0012 10 0.0004 0.0036
#> sigma0_3_3 0.001 0.0006 10 0.0005 0.0022
confint(pb)
#> 2.5 % 97.5 %
#> beta_1_1 0.4116181715 0.555290574
#> beta_2_1 -0.0403928322 0.082848108
#> beta_3_1 -0.0781574901 0.131326844
#> beta_1_2 -0.0681340006 0.118237420
#> beta_2_2 0.4439997593 0.603233016
#> beta_3_2 -0.0101631805 0.096683016
#> beta_1_3 -0.0724607669 0.052155419
#> beta_2_3 -0.0574483499 0.070495533
#> beta_3_3 0.3106499503 0.565785361
#> psi_1_1 0.0008514919 0.001069493
#> psi_2_2 0.0008984977 0.001061206
#> psi_3_3 0.0008957730 0.001084173
#> mu0_1_1 -0.0093538510 0.011387247
#> mu0_2_1 -0.0107924456 0.020685178
#> mu0_3_1 -0.0246156468 0.015541177
#> sigma0_1_1 0.0002063937 0.001753763
#> sigma0_2_2 0.0003663549 0.003572860
#> sigma0_3_3 0.0005407295 0.002243706
vcov(pb)
#> beta_1_1 beta_2_1 beta_3_1 beta_1_2
#> beta_1_1 2.298086e-03 -5.946947e-04 -1.588033e-03 -8.622130e-04
#> beta_2_1 -5.946947e-04 1.852729e-03 2.650435e-03 -1.550321e-04
#> beta_3_1 -1.588033e-03 2.650435e-03 5.166260e-03 -1.285603e-04
#> beta_1_2 -8.622130e-04 -1.550321e-04 -1.285603e-04 4.855526e-03
#> beta_2_2 6.899260e-04 8.070575e-04 1.553413e-03 6.133108e-04
#> beta_3_2 3.367613e-04 -1.001946e-04 4.889234e-04 -2.457563e-04
#> beta_1_3 4.616224e-04 -2.840657e-04 -1.058703e-03 1.220404e-03
#> beta_2_3 3.707927e-04 -1.212402e-06 -5.186974e-04 1.376664e-03
#> beta_3_3 -7.594566e-04 -4.098391e-06 -1.524120e-04 9.880377e-04
#> psi_1_1 -1.661606e-06 7.127546e-07 8.318978e-07 -2.271265e-06
#> psi_2_2 5.244801e-07 1.247412e-07 2.238045e-07 1.264535e-06
#> psi_3_3 -1.856750e-06 4.940852e-07 1.127305e-06 1.216409e-06
#> mu0_1_1 -1.724581e-04 -9.382073e-05 -1.019350e-04 2.291777e-04
#> mu0_2_1 -1.694469e-04 1.204791e-04 3.112090e-04 3.575750e-04
#> mu0_3_1 1.377551e-04 1.724709e-04 1.730457e-04 -5.758640e-04
#> sigma0_1_1 2.866472e-06 5.582489e-06 -1.855611e-06 -2.311721e-05
#> sigma0_2_2 -1.861969e-05 -6.285895e-06 -7.878012e-06 -1.485582e-05
#> sigma0_3_3 5.638744e-06 5.116476e-06 1.224554e-05 -3.687752e-05
#> beta_2_2 beta_3_2 beta_1_3 beta_2_3
#> beta_1_1 6.899260e-04 3.367613e-04 4.616224e-04 3.707927e-04
#> beta_2_1 8.070575e-04 -1.001946e-04 -2.840657e-04 -1.212402e-06
#> beta_3_1 1.553413e-03 4.889234e-04 -1.058703e-03 -5.186974e-04
#> beta_1_2 6.133108e-04 -2.457563e-04 1.220404e-03 1.376664e-03
#> beta_2_2 2.978467e-03 -4.008152e-05 4.316511e-04 3.805633e-04
#> beta_3_2 -4.008152e-05 1.375060e-03 -7.350628e-04 -2.984134e-04
#> beta_1_3 4.316511e-04 -7.350628e-04 2.026186e-03 9.021806e-04
#> beta_2_3 3.805633e-04 -2.984134e-04 9.021806e-04 1.687769e-03
#> beta_3_3 1.083996e-03 -1.103972e-03 -1.155997e-03 -2.355697e-04
#> psi_1_1 -2.936293e-06 -2.866951e-07 -2.895984e-08 -9.442857e-07
#> psi_2_2 3.824225e-07 1.322813e-06 1.812758e-07 -1.401687e-07
#> psi_3_3 -1.491368e-06 2.872840e-07 -2.333341e-07 1.039667e-06
#> mu0_1_1 -1.218306e-04 4.038472e-06 1.057204e-04 -5.024007e-05
#> mu0_2_1 -2.892627e-05 2.068456e-04 1.494827e-06 9.319722e-05
#> mu0_3_1 -3.267230e-05 4.428562e-05 2.207153e-06 1.296002e-04
#> sigma0_1_1 -8.968996e-06 -1.221431e-06 -1.000590e-05 -6.728590e-06
#> sigma0_2_2 4.120067e-07 -7.511271e-06 8.447553e-06 -4.530228e-07
#> sigma0_3_3 7.080961e-06 2.171812e-06 -9.408207e-06 -1.789169e-05
#> beta_3_3 psi_1_1 psi_2_2 psi_3_3
#> beta_1_1 -7.594566e-04 -1.661606e-06 5.244801e-07 -1.856750e-06
#> beta_2_1 -4.098391e-06 7.127546e-07 1.247412e-07 4.940852e-07
#> beta_3_1 -1.524120e-04 8.318978e-07 2.238045e-07 1.127305e-06
#> beta_1_2 9.880377e-04 -2.271265e-06 1.264535e-06 1.216409e-06
#> beta_2_2 1.083996e-03 -2.936293e-06 3.824225e-07 -1.491368e-06
#> beta_3_2 -1.103972e-03 -2.866951e-07 1.322813e-06 2.872840e-07
#> beta_1_3 -1.155997e-03 -2.895984e-08 1.812758e-07 -2.333341e-07
#> beta_2_3 -2.355697e-04 -9.442857e-07 -1.401687e-07 1.039667e-06
#> beta_3_3 6.793019e-03 -3.271143e-06 -2.841936e-07 -1.591097e-07
#> psi_1_1 -3.271143e-06 6.257162e-09 -1.016943e-09 1.995431e-09
#> psi_2_2 -2.841936e-07 -1.016943e-09 3.356282e-09 4.658279e-10
#> psi_3_3 -1.591097e-07 1.995431e-09 4.658279e-10 4.432737e-09
#> mu0_1_1 -2.138337e-04 1.722138e-07 3.621344e-08 9.907652e-09
#> mu0_2_1 -4.321791e-04 1.110986e-07 2.320145e-07 3.138911e-07
#> mu0_3_1 -3.717613e-04 4.210829e-07 -8.960295e-08 2.770162e-07
#> sigma0_1_1 -4.795336e-07 1.562190e-08 -7.522821e-09 -8.363358e-09
#> sigma0_2_2 -4.810817e-06 2.357452e-08 -1.722137e-08 6.312961e-09
#> sigma0_3_3 8.164963e-07 9.412104e-09 -3.924849e-09 -1.837240e-08
#> mu0_1_1 mu0_2_1 mu0_3_1 sigma0_1_1
#> beta_1_1 -1.724581e-04 -1.694469e-04 1.377551e-04 2.866472e-06
#> beta_2_1 -9.382073e-05 1.204791e-04 1.724709e-04 5.582489e-06
#> beta_3_1 -1.019350e-04 3.112090e-04 1.730457e-04 -1.855611e-06
#> beta_1_2 2.291777e-04 3.575750e-04 -5.758640e-04 -2.311721e-05
#> beta_2_2 -1.218306e-04 -2.892627e-05 -3.267230e-05 -8.968996e-06
#> beta_3_2 4.038472e-06 2.068456e-04 4.428562e-05 -1.221431e-06
#> beta_1_3 1.057204e-04 1.494827e-06 2.207153e-06 -1.000590e-05
#> beta_2_3 -5.024007e-05 9.319722e-05 1.296002e-04 -6.728590e-06
#> beta_3_3 -2.138337e-04 -4.321791e-04 -3.717613e-04 -4.795336e-07
#> psi_1_1 1.722138e-07 1.110986e-07 4.210829e-07 1.562190e-08
#> psi_2_2 3.621344e-08 2.320145e-07 -8.960295e-08 -7.522821e-09
#> psi_3_3 9.907652e-09 3.138911e-07 2.770162e-07 -8.363358e-09
#> mu0_1_1 6.811139e-05 4.001262e-05 -5.846844e-05 -4.793451e-07
#> mu0_2_1 4.001262e-05 1.058619e-04 -1.670120e-05 -1.510791e-06
#> mu0_3_1 -5.846844e-05 -1.670120e-05 1.742157e-04 1.901602e-06
#> sigma0_1_1 -4.793451e-07 -1.510791e-06 1.901602e-06 2.763533e-07
#> sigma0_2_2 4.741424e-06 -4.438289e-07 2.363057e-06 9.901790e-08
#> sigma0_3_3 -2.030631e-06 -3.317229e-06 3.183708e-06 1.159188e-07
#> sigma0_2_2 sigma0_3_3
#> beta_1_1 -1.861969e-05 5.638744e-06
#> beta_2_1 -6.285895e-06 5.116476e-06
#> beta_3_1 -7.878012e-06 1.224554e-05
#> beta_1_2 -1.485582e-05 -3.687752e-05
#> beta_2_2 4.120067e-07 7.080961e-06
#> beta_3_2 -7.511271e-06 2.171812e-06
#> beta_1_3 8.447553e-06 -9.408207e-06
#> beta_2_3 -4.530228e-07 -1.789169e-05
#> beta_3_3 -4.810817e-06 8.164963e-07
#> psi_1_1 2.357452e-08 9.412104e-09
#> psi_2_2 -1.722137e-08 -3.924849e-09
#> psi_3_3 6.312961e-09 -1.837240e-08
#> mu0_1_1 4.741424e-06 -2.030631e-06
#> mu0_2_1 -4.438289e-07 -3.317229e-06
#> mu0_3_1 2.363057e-06 3.183708e-06
#> sigma0_1_1 9.901790e-08 1.159188e-07
#> sigma0_2_2 1.336808e-06 6.526429e-08
#> sigma0_3_3 6.526429e-08 3.982781e-07
coef(pb)
#> beta_1_1 beta_2_1 beta_3_1 beta_1_2 beta_2_2 beta_3_2 beta_1_3
#> 0.500 0.000 0.000 0.000 0.500 0.000 0.000
#> beta_2_3 beta_3_3 psi_1_1 psi_2_2 psi_3_3 mu0_1_1 mu0_2_1
#> 0.000 0.500 0.001 0.001 0.001 0.000 0.000
#> mu0_3_1 sigma0_1_1 sigma0_2_2 sigma0_3_3
#> 0.000 0.001 0.001 0.001
print(pb, type = "bc") # bias-corrected
#> Call:
#> PBSSMVARFixed(R = 10L, path = path, prefix = "var", n = n, time = time,
#> mu0 = mu0, sigma0_l = sigma0_l, alpha = alpha, beta = beta,
#> psi_l = psi_l, type = 0, ncores = 1, seed = 42)
#>
#> Parametric bootstrap confidence intervals.
#> type = "bc"
#> est se R 2.5% 97.5%
#> beta_1_1 0.500 0.0479 10 0.4513 0.5588
#> beta_2_1 0.000 0.0430 10 -0.0404 0.0828
#> beta_3_1 0.000 0.0719 10 -0.0528 0.1514
#> beta_1_2 0.000 0.0697 10 -0.0699 0.1102
#> beta_2_2 0.500 0.0546 10 0.4368 0.5753
#> beta_3_2 0.000 0.0371 10 -0.0130 0.0308
#> beta_1_3 0.000 0.0450 10 -0.0725 0.0522
#> beta_2_3 0.000 0.0411 10 -0.0400 0.0855
#> beta_3_3 0.500 0.0824 10 0.2898 0.5426
#> psi_1_1 0.001 0.0001 10 0.0009 0.0011
#> psi_2_2 0.001 0.0001 10 0.0009 0.0011
#> psi_3_3 0.001 0.0001 10 0.0009 0.0011
#> mu0_1_1 0.000 0.0083 10 -0.0086 0.0114
#> mu0_2_1 0.000 0.0103 10 -0.0108 0.0207
#> mu0_3_1 0.000 0.0132 10 -0.0279 0.0077
#> sigma0_1_1 0.001 0.0005 10 0.0004 0.0018
#> sigma0_2_2 0.001 0.0012 10 0.0004 0.0040
#> sigma0_3_3 0.001 0.0006 10 0.0006 0.0023
summary(pb, type = "bc")
#> Call:
#> PBSSMVARFixed(R = 10L, path = path, prefix = "var", n = n, time = time,
#> mu0 = mu0, sigma0_l = sigma0_l, alpha = alpha, beta = beta,
#> psi_l = psi_l, type = 0, ncores = 1, seed = 42)
#> est se R 2.5% 97.5%
#> beta_1_1 0.500 0.0479 10 0.4513 0.5588
#> beta_2_1 0.000 0.0430 10 -0.0404 0.0828
#> beta_3_1 0.000 0.0719 10 -0.0528 0.1514
#> beta_1_2 0.000 0.0697 10 -0.0699 0.1102
#> beta_2_2 0.500 0.0546 10 0.4368 0.5753
#> beta_3_2 0.000 0.0371 10 -0.0130 0.0308
#> beta_1_3 0.000 0.0450 10 -0.0725 0.0522
#> beta_2_3 0.000 0.0411 10 -0.0400 0.0855
#> beta_3_3 0.500 0.0824 10 0.2898 0.5426
#> psi_1_1 0.001 0.0001 10 0.0009 0.0011
#> psi_2_2 0.001 0.0001 10 0.0009 0.0011
#> psi_3_3 0.001 0.0001 10 0.0009 0.0011
#> mu0_1_1 0.000 0.0083 10 -0.0086 0.0114
#> mu0_2_1 0.000 0.0103 10 -0.0108 0.0207
#> mu0_3_1 0.000 0.0132 10 -0.0279 0.0077
#> sigma0_1_1 0.001 0.0005 10 0.0004 0.0018
#> sigma0_2_2 0.001 0.0012 10 0.0004 0.0040
#> sigma0_3_3 0.001 0.0006 10 0.0006 0.0023
confint(pb, type = "bc")
#> 2.5 % 97.5 %
#> beta_1_1 0.4512946903 0.558836344
#> beta_2_1 -0.0403928322 0.082848108
#> beta_3_1 -0.0528482046 0.151371459
#> beta_1_2 -0.0698588308 0.110227599
#> beta_2_2 0.4368115908 0.575332421
#> beta_3_2 -0.0130351289 0.030832505
#> beta_1_3 -0.0724607669 0.052155419
#> beta_2_3 -0.0399948946 0.085503162
#> beta_3_3 0.2897539685 0.542562597
#> psi_1_1 0.0008514919 0.001069493
#> psi_2_2 0.0008951854 0.001053960
#> psi_3_3 0.0009384488 0.001087969
#> mu0_1_1 -0.0086169076 0.011419101
#> mu0_2_1 -0.0107924456 0.020685178
#> mu0_3_1 -0.0278534096 0.007708978
#> sigma0_1_1 0.0003791673 0.001833989
#> sigma0_2_2 0.0003786557 0.003980955
#> sigma0_3_3 0.0005860189 0.002311270
# }