Parametric Bootstrap for the Ornstein–Uhlenbeck Model using a State Space Model Parameterization (Fixed Parameters)
Source:R/bootStateSpace-pb-ssm-ou-fixed.R
PBSSMOUFixed.Rd
This function simulates data from
a Ornstein–Uhlenbeck (OU) model
using a state-space model parameterization
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMOUFixed(
R,
path,
prefix,
n,
time,
delta_t = 0.1,
mu0,
sigma0_l,
mu,
phi,
sigma_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL
)
Arguments
- R
Positive integer. Number of bootstrap samples.
- path
Path to a directory to store bootstrap samples and estimates.
- prefix
Character string. Prefix used for the file names for the bootstrap samples and estimates.
- n
Positive integer. Number of individuals.
- time
Positive integer. Number of time points.
- delta_t
Numeric. Time interval (\(\Delta_t\)).
- mu0
Numeric vector. Mean of initial latent variable values (\(\boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}\)).
- sigma0_l
Numeric matrix. Cholesky factorization (
t(chol(sigma0))
) of the covariance matrix of initial latent variable values (\(\boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0}\)).- mu
Numeric vector. The long-term mean or equilibrium level (\(\boldsymbol{\mu}\)).
- phi
Numeric matrix. The drift matrix which represents the rate of change of the solution in the absence of any random fluctuations (\(\boldsymbol{\Phi}\)). It also represents the rate of mean reversion, determining how quickly the variable returns to its mean.
- sigma_l
Numeric matrix. Cholesky factorization (
t(chol(sigma))
) of the covariance matrix of volatility or randomness in the process (\(\boldsymbol{\Sigma}\)).- nu
Numeric vector. Vector of intercept values for the measurement model (\(\boldsymbol{\nu}\)).
- lambda
Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (\(\boldsymbol{\Lambda}\)).
- theta_l
Numeric matrix. Cholesky factorization (
t(chol(theta))
) of the covariance matrix of the measurement error (\(\boldsymbol{\Theta}\)).- type
Integer. State space model type. See Details for more information.
- x
List. Each element of the list is a matrix of covariates for each individual
i
inn
. The number of columns in each matrix should be equal totime
.- gamma
Numeric matrix. Matrix linking the covariates to the latent variables at current time point (\(\boldsymbol{\Gamma}\)).
- kappa
Numeric matrix. Matrix linking the covariates to the observed variables at current time point (\(\boldsymbol{\kappa}\)).
- mu0_fixed
Logical. If
mu0_fixed = TRUE
, fix the initial mean vector tomu0
. Ifmu0_fixed = FALSE
,mu0
is estimated.- sigma0_fixed
Logical. If
sigma0_fixed = TRUE
, fix the initial covariance matrix totcrossprod(sigma0_l)
. Ifsigma0_fixed = FALSE
,sigma0
is estimated.- alpha_level
Numeric vector. Significance level \(\alpha\).
- optimization_flag
a flag (TRUE/FALSE) indicating whether optimization is to be done.
- hessian_flag
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.
- verbose
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed
- weight_flag
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual
- debug_flag
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes
- perturb_flag
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting.
- xtol_rel
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- stopval
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ftol_rel
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ftol_abs
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- maxeval
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- maxtime
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ncores
Positive integer. Number of cores to use. If
ncores = NULL
, use a single core. Consider using multiple cores when number of bootstrap samplesR
is a large value.- seed
Random seed.
Value
Returns an object
of class bootstatespace
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(\boldsymbol{\hat{\theta}}\).
- vcov
Sampling variance-covariance matrix of \(\boldsymbol{\hat{\theta}}\).
- est
Vector of estimated \(\boldsymbol{\hat{\theta}}\).
- fun
Function used ("PBSSMOUFixed").
- method
Bootstrap method used ("parametric").
Details
Type 0
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) $$ where \(\mathbf{y}_{i, t}\), \(\boldsymbol{\eta}_{i, t}\), and \(\boldsymbol{\varepsilon}_{i, t}\) are random variables and \(\boldsymbol{\nu}\), \(\boldsymbol{\Lambda}\), and \(\boldsymbol{\Theta}\) are model parameters. \(\mathbf{y}_{i, t}\) represents a vector of observed random variables, \(\boldsymbol{\eta}_{i, t}\) a vector of latent random variables, and \(\boldsymbol{\varepsilon}_{i, t}\) a vector of random measurement errors, at time \(t\) and individual \(i\). \(\boldsymbol{\nu}\) denotes a vector of intercepts, \(\boldsymbol{\Lambda}\) a matrix of factor loadings, and \(\boldsymbol{\Theta}\) the covariance matrix of \(\boldsymbol{\varepsilon}\).
An alternative representation of the measurement error is given by $$ \boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) $$ where \(\mathbf{z}_{i, t}\) is a vector of independent standard normal random variables and \( \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} . \)
The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \boldsymbol{\Phi} \left( \boldsymbol{\eta}_{i, t} - \boldsymbol{\mu} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} $$ where \(\boldsymbol{\mu}\) is the long-term mean or equilibrium level, \(\boldsymbol{\Phi}\) is the rate of mean reversion, determining how quickly the variable returns to its mean, \(\boldsymbol{\Sigma}\) is the matrix of volatility or randomness in the process, and \(\mathrm{d}\boldsymbol{W}\) is a Wiener process or Brownian motion, which represents random fluctuations.
Type 1
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) . $$
The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \boldsymbol{\Phi} \left( \boldsymbol{\eta}_{i, t} - \boldsymbol{\mu} \right) \mathrm{d}t + \boldsymbol{\Gamma} \mathbf{x}_{i, t} + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} $$ where \(\mathbf{x}_{i, t}\) represents a vector of covariates at time \(t\) and individual \(i\), and \(\boldsymbol{\Gamma}\) the coefficient matrix linking the covariates to the latent variables.
Type 2
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\kappa} \mathbf{x}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) $$ where \(\boldsymbol{\kappa}\) represents the coefficient matrix linking the covariates to the observed variables.
The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \boldsymbol{\Phi} \left( \boldsymbol{\eta}_{i, t} - \boldsymbol{\mu} \right) \mathrm{d}t + \boldsymbol{\Gamma} \mathbf{x}_{i, t} + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} . $$
The OU model as a linear stochastic differential equation model
The OU model is a first-order linear stochastic differential equation model in the form of
$$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \left( \boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i, t} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} $$ where \(\boldsymbol{\mu} = - \boldsymbol{\Phi}^{-1} \boldsymbol{\iota}\) and, equivalently \(\boldsymbol{\iota} = - \boldsymbol{\Phi} \boldsymbol{\mu}\).
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See also
Other Bootstrap for State Space Models Functions:
PBSSMFixed()
,
PBSSMLinSDEFixed()
,
PBSSMVARFixed()
Examples
# \donttest{
# prepare parameters
## number of individuals
n <- 5
## time points
time <- 50
delta_t <- 0.10
## dynamic structure
p <- 2
mu0 <- c(-3.0, 1.5)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
mu <- c(5.76, 5.18)
phi <- matrix(
data = c(
-0.10,
0.05,
0.05,
-0.10
),
nrow = p
)
sigma <- matrix(
data = c(
2.79,
0.06,
0.06,
3.27
),
nrow = p
)
sigma_l <- t(chol(sigma))
## measurement model
k <- 2
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
path <- tempdir()
pb <- PBSSMOUFixed(
R = 10L, # use at least 1000 in actual research
path = path,
prefix = "ou",
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0,
ncores = 1, # consider using multiple cores
seed = 42
)
print(pb)
#> Call:
#> PBSSMOUFixed(R = 10L, path = path, prefix = "ou", n = n, time = time,
#> delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l, mu = mu,
#> phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda, theta_l = theta_l,
#> type = 0, ncores = 1, seed = 42)
#>
#> Parametric bootstrap confidence intervals.
#> type = "pc"
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1121 10 -0.4299 -0.0978
#> phi_2_1 0.050 0.2090 10 -0.1890 0.3585
#> phi_1_2 0.050 0.2549 10 -0.1524 0.5515
#> phi_2_2 -0.100 0.2801 10 -0.7518 0.0731
#> mu_1_1 5.760 17.5539 10 -0.1145 46.4734
#> mu_2_1 5.180 16.6210 10 -18.3868 35.9710
#> sigma_1_1 2.790 0.2068 10 2.4150 2.9959
#> sigma_2_1 0.060 0.1520 10 -0.2386 0.2020
#> sigma_2_2 3.270 0.1900 10 2.9998 3.4951
#> theta_1_1 0.001 0.0008 10 0.0000 0.0022
#> theta_2_2 0.001 0.0006 10 0.0000 0.0013
#> mu0_1_1 -3.000 0.0110 10 -3.0157 -2.9836
#> mu0_2_1 1.500 0.0250 10 1.4730 1.5375
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0047
summary(pb)
#> Call:
#> PBSSMOUFixed(R = 10L, path = path, prefix = "ou", n = n, time = time,
#> delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l, mu = mu,
#> phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda, theta_l = theta_l,
#> type = 0, ncores = 1, seed = 42)
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1121 10 -0.4299 -0.0978
#> phi_2_1 0.050 0.2090 10 -0.1890 0.3585
#> phi_1_2 0.050 0.2549 10 -0.1524 0.5515
#> phi_2_2 -0.100 0.2801 10 -0.7518 0.0731
#> mu_1_1 5.760 17.5539 10 -0.1145 46.4734
#> mu_2_1 5.180 16.6210 10 -18.3868 35.9710
#> sigma_1_1 2.790 0.2068 10 2.4150 2.9959
#> sigma_2_1 0.060 0.1520 10 -0.2386 0.2020
#> sigma_2_2 3.270 0.1900 10 2.9998 3.4951
#> theta_1_1 0.001 0.0008 10 0.0000 0.0022
#> theta_2_2 0.001 0.0006 10 0.0000 0.0013
#> mu0_1_1 -3.000 0.0110 10 -3.0157 -2.9836
#> mu0_2_1 1.500 0.0250 10 1.4730 1.5375
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0047
confint(pb)
#> 2.5 % 97.5 %
#> phi_1_1 -4.299498e-01 -0.097838071
#> phi_2_1 -1.889736e-01 0.358456954
#> phi_1_2 -1.524254e-01 0.551539485
#> phi_2_2 -7.518472e-01 0.073137564
#> mu_1_1 -1.145155e-01 46.473439848
#> mu_2_1 -1.838681e+01 35.970981209
#> sigma_1_1 2.415048e+00 2.995853958
#> sigma_2_1 -2.386131e-01 0.201967468
#> sigma_2_2 2.999791e+00 3.495110242
#> theta_1_1 8.222750e-21 0.002190146
#> theta_2_2 3.994032e-15 0.001347969
#> mu0_1_1 -3.015728e+00 -2.983648643
#> mu0_2_1 1.473001e+00 1.537463560
#> sigma0_1_1 6.434462e-13 0.002105113
#> sigma0_2_2 7.420571e-17 0.004749877
vcov(pb)
#> phi_1_1 phi_2_1 phi_1_2 phi_2_2
#> phi_1_1 1.257737e-02 -8.573627e-03 -2.080079e-02 -2.195146e-03
#> phi_2_1 -8.573627e-03 4.366776e-02 3.067899e-02 -3.751089e-02
#> phi_1_2 -2.080079e-02 3.067899e-02 6.497530e-02 -1.137857e-02
#> phi_2_2 -2.195146e-03 -3.751089e-02 -1.137857e-02 7.846262e-02
#> mu_1_1 -7.669445e-02 -5.399019e-02 7.873338e-01 -2.125067e-02
#> mu_2_1 -1.028120e+00 1.345446e+00 2.762426e+00 1.034819e+00
#> sigma_1_1 8.727790e-03 1.424875e-02 -2.119645e-02 -4.376692e-02
#> sigma_2_1 9.300627e-03 -5.208610e-03 -1.044093e-02 -2.135237e-02
#> sigma_2_2 -5.055521e-03 1.685927e-02 2.169304e-02 -5.086713e-03
#> theta_1_1 -1.390815e-05 4.771636e-05 1.992739e-05 1.518653e-05
#> theta_2_2 1.234279e-05 -2.791820e-05 -1.024607e-05 6.048847e-05
#> mu0_1_1 6.252322e-04 -1.022521e-04 -1.331727e-03 -1.346702e-03
#> mu0_2_1 5.562748e-04 3.728121e-04 -1.661911e-03 1.751559e-03
#> sigma0_1_1 3.149724e-05 -1.182308e-05 -6.701754e-05 -1.280623e-04
#> sigma0_2_2 -3.144373e-05 1.524124e-04 -2.147851e-06 -2.277544e-04
#> mu_1_1 mu_2_1 sigma_1_1 sigma_2_1
#> phi_1_1 -7.669445e-02 -1.028119915 8.727790e-03 9.300627e-03
#> phi_2_1 -5.399019e-02 1.345446306 1.424875e-02 -5.208610e-03
#> phi_1_2 7.873338e-01 2.762426262 -2.119645e-02 -1.044093e-02
#> phi_2_2 -2.125067e-02 1.034819010 -4.376692e-02 -2.135237e-02
#> mu_1_1 3.081393e+02 60.862388153 3.956182e-01 5.875323e-01
#> mu_2_1 6.086239e+01 276.256799246 -1.740437e+00 -1.707757e+00
#> sigma_1_1 3.956182e-01 -1.740436617 4.276108e-02 1.548008e-02
#> sigma_2_1 5.875323e-01 -1.707757471 1.548008e-02 2.311008e-02
#> sigma_2_2 9.489904e-01 0.715381927 4.122714e-03 -6.081585e-03
#> theta_1_1 -3.236506e-03 0.002980060 -3.946337e-06 -7.926258e-05
#> theta_2_2 9.280497e-03 0.002737716 -9.693588e-06 -1.764544e-06
#> mu0_1_1 -7.230339e-02 -0.122398282 1.435171e-03 9.253967e-04
#> mu0_2_1 1.390838e-01 -0.054326599 7.532324e-04 -5.031518e-04
#> sigma0_1_1 -1.326415e-04 -0.006823324 1.033184e-04 9.917989e-05
#> sigma0_2_2 -1.829625e-02 -0.004078576 1.470309e-04 3.178381e-05
#> sigma_2_2 theta_1_1 theta_2_2 mu0_1_1
#> phi_1_1 -5.055521e-03 -1.390815e-05 1.234279e-05 6.252322e-04
#> phi_2_1 1.685927e-02 4.771636e-05 -2.791820e-05 -1.022521e-04
#> phi_1_2 2.169304e-02 1.992739e-05 -1.024607e-05 -1.331727e-03
#> phi_2_2 -5.086713e-03 1.518653e-05 6.048847e-05 -1.346702e-03
#> mu_1_1 9.489904e-01 -3.236506e-03 9.280497e-03 -7.230339e-02
#> mu_2_1 7.153819e-01 2.980060e-03 2.737716e-03 -1.223983e-01
#> sigma_1_1 4.122714e-03 -3.946337e-06 -9.693588e-06 1.435171e-03
#> sigma_2_1 -6.081585e-03 -7.926258e-05 -1.764544e-06 9.253967e-04
#> sigma_2_2 3.610736e-02 4.839061e-05 2.643758e-05 1.445422e-04
#> theta_1_1 4.839061e-05 7.155912e-07 -3.802599e-08 -2.756364e-06
#> theta_2_2 2.643758e-05 -3.802599e-08 3.721288e-07 -2.954811e-06
#> mu0_1_1 1.445422e-04 -2.756364e-06 -2.954811e-06 1.210246e-04
#> mu0_2_1 1.024705e-03 7.593119e-06 7.652560e-06 -6.659152e-05
#> sigma0_1_1 -2.885708e-05 -5.904945e-07 -1.262447e-07 7.672167e-06
#> sigma0_2_2 1.581822e-05 -4.659707e-07 -8.219888e-07 1.484443e-05
#> mu0_2_1 sigma0_1_1 sigma0_2_2
#> phi_1_1 5.562748e-04 3.149724e-05 -3.144373e-05
#> phi_2_1 3.728121e-04 -1.182308e-05 1.524124e-04
#> phi_1_2 -1.661911e-03 -6.701754e-05 -2.147851e-06
#> phi_2_2 1.751559e-03 -1.280623e-04 -2.277544e-04
#> mu_1_1 1.390838e-01 -1.326415e-04 -1.829625e-02
#> mu_2_1 -5.432660e-02 -6.823324e-03 -4.078576e-03
#> sigma_1_1 7.532324e-04 1.033184e-04 1.470309e-04
#> sigma_2_1 -5.031518e-04 9.917989e-05 3.178381e-05
#> sigma_2_2 1.024705e-03 -2.885708e-05 1.581822e-05
#> theta_1_1 7.593119e-06 -5.904945e-07 -4.659707e-07
#> theta_2_2 7.652560e-06 -1.262447e-07 -8.219888e-07
#> mu0_1_1 -6.659152e-05 7.672167e-06 1.484443e-05
#> mu0_2_1 6.231792e-04 -1.085675e-05 -2.047532e-05
#> sigma0_1_1 -1.085675e-05 8.352968e-07 1.133661e-06
#> sigma0_2_2 -2.047532e-05 1.133661e-06 4.043050e-06
coef(pb)
#> phi_1_1 phi_2_1 phi_1_2 phi_2_2 mu_1_1 mu_2_1 sigma_1_1
#> -0.100 0.050 0.050 -0.100 5.760 5.180 2.790
#> sigma_2_1 sigma_2_2 theta_1_1 theta_2_2 mu0_1_1 mu0_2_1 sigma0_1_1
#> 0.060 3.270 0.001 0.001 -3.000 1.500 0.001
#> sigma0_2_2
#> 0.001
print(pb, type = "bc") # bias-corrected
#> Call:
#> PBSSMOUFixed(R = 10L, path = path, prefix = "ou", n = n, time = time,
#> delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l, mu = mu,
#> phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda, theta_l = theta_l,
#> type = 0, ncores = 1, seed = 42)
#>
#> Parametric bootstrap confidence intervals.
#> type = "bc"
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1121 10 -0.2843 -0.0972
#> phi_2_1 0.050 0.2090 10 -0.1890 0.3585
#> phi_1_2 0.050 0.2549 10 -0.1532 0.4014
#> phi_2_2 -0.100 0.2801 10 -0.3337 0.0814
#> mu_1_1 5.760 17.5539 10 -0.3628 44.8431
#> mu_2_1 5.180 16.6210 10 -18.3868 35.9710
#> sigma_1_1 2.790 0.2068 10 2.4150 2.9959
#> sigma_2_1 0.060 0.1520 10 -0.1439 0.2382
#> sigma_2_2 3.270 0.1900 10 2.9948 3.4753
#> theta_1_1 0.001 0.0008 10 0.0000 0.0021
#> theta_2_2 0.001 0.0006 10 0.0000 0.0014
#> mu0_1_1 -3.000 0.0110 10 -3.0158 -2.9862
#> mu0_2_1 1.500 0.0250 10 1.4723 1.5333
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0048
summary(pb, type = "bc")
#> Call:
#> PBSSMOUFixed(R = 10L, path = path, prefix = "ou", n = n, time = time,
#> delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l, mu = mu,
#> phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda, theta_l = theta_l,
#> type = 0, ncores = 1, seed = 42)
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1121 10 -0.2843 -0.0972
#> phi_2_1 0.050 0.2090 10 -0.1890 0.3585
#> phi_1_2 0.050 0.2549 10 -0.1532 0.4014
#> phi_2_2 -0.100 0.2801 10 -0.3337 0.0814
#> mu_1_1 5.760 17.5539 10 -0.3628 44.8431
#> mu_2_1 5.180 16.6210 10 -18.3868 35.9710
#> sigma_1_1 2.790 0.2068 10 2.4150 2.9959
#> sigma_2_1 0.060 0.1520 10 -0.1439 0.2382
#> sigma_2_2 3.270 0.1900 10 2.9948 3.4753
#> theta_1_1 0.001 0.0008 10 0.0000 0.0021
#> theta_2_2 0.001 0.0006 10 0.0000 0.0014
#> mu0_1_1 -3.000 0.0110 10 -3.0158 -2.9862
#> mu0_2_1 1.500 0.0250 10 1.4723 1.5333
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0048
confint(pb, type = "bc")
#> 2.5 % 97.5 %
#> phi_1_1 -2.842704e-01 -0.097216397
#> phi_2_1 -1.889736e-01 0.358456954
#> phi_1_2 -1.531911e-01 0.401366106
#> phi_2_2 -3.336647e-01 0.081435235
#> mu_1_1 -3.627649e-01 44.843146343
#> mu_2_1 -1.838681e+01 35.970981209
#> sigma_1_1 2.415048e+00 2.995853958
#> sigma_2_1 -1.438687e-01 0.238206326
#> sigma_2_2 2.994832e+00 3.475302384
#> theta_1_1 3.156938e-21 0.002077924
#> theta_2_2 1.335401e-12 0.001354489
#> mu0_1_1 -3.015769e+00 -2.986220287
#> mu0_2_1 1.472278e+00 1.533275926
#> sigma0_1_1 6.398624e-11 0.002145621
#> sigma0_2_2 8.595244e-13 0.004833875
# }