Parametric Bootstrap for the Linear Stochastic Differential Equation Model using a State Space Model Parameterization (Fixed Parameters)
Source:R/bootStateSpace-pb-ssm-lin-sde-fixed.R
PBSSMLinSDEFixed.Rd
This function simulates data from
a linear stochastic differential equation model
using a state-space model parameterization
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMLinSDEFixed(
R,
path,
prefix,
n,
time,
delta_t = 0.1,
mu0,
sigma0_l,
iota,
phi,
sigma_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL
)
Arguments
- R
Positive integer. Number of bootstrap samples.
- path
Path to a directory to store bootstrap samples and estimates.
- prefix
Character string. Prefix used for the file names for the bootstrap samples and estimates.
- n
Positive integer. Number of individuals.
- time
Positive integer. Number of time points.
- delta_t
Numeric. Time interval (\(\Delta_t\)).
- mu0
Numeric vector. Mean of initial latent variable values (\(\boldsymbol{\mu}_{\boldsymbol{\eta} \mid 0}\)).
- sigma0_l
Numeric matrix. Cholesky factorization (
t(chol(sigma0))
) of the covariance matrix of initial latent variable values (\(\boldsymbol{\Sigma}_{\boldsymbol{\eta} \mid 0}\)).- iota
Numeric vector. An unobserved term that is constant over time (\(\boldsymbol{\iota}\)).
- phi
Numeric matrix. The drift matrix which represents the rate of change of the solution in the absence of any random fluctuations (\(\boldsymbol{\Phi}\)).
- sigma_l
Numeric matrix. Cholesky factorization (
t(chol(sigma))
) of the covariance matrix of volatility or randomness in the process (\(\boldsymbol{\Sigma}\)).- nu
Numeric vector. Vector of intercept values for the measurement model (\(\boldsymbol{\nu}\)).
- lambda
Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (\(\boldsymbol{\Lambda}\)).
- theta_l
Numeric matrix. Cholesky factorization (
t(chol(theta))
) of the covariance matrix of the measurement error (\(\boldsymbol{\Theta}\)).- type
Integer. State space model type. See Details for more information.
- x
List. Each element of the list is a matrix of covariates for each individual
i
inn
. The number of columns in each matrix should be equal totime
.- gamma
Numeric matrix. Matrix linking the covariates to the latent variables at current time point (\(\boldsymbol{\Gamma}\)).
- kappa
Numeric matrix. Matrix linking the covariates to the observed variables at current time point (\(\boldsymbol{\kappa}\)).
- mu0_fixed
Logical. If
mu0_fixed = TRUE
, fix the initial mean vector tomu0
. Ifmu0_fixed = FALSE
,mu0
is estimated.- sigma0_fixed
Logical. If
sigma0_fixed = TRUE
, fix the initial covariance matrix totcrossprod(sigma0_l)
. Ifsigma0_fixed = FALSE
,sigma0
is estimated.- alpha_level
Numeric vector. Significance level \(\alpha\).
- optimization_flag
a flag (TRUE/FALSE) indicating whether optimization is to be done.
- hessian_flag
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated.
- verbose
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed
- weight_flag
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual
- debug_flag
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes
- perturb_flag
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting.
- xtol_rel
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- stopval
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ftol_rel
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ftol_abs
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- maxeval
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- maxtime
Stopping criteria option for parameter optimization. See
dynr::dynr.model()
for more details.- ncores
Positive integer. Number of cores to use. If
ncores = NULL
, use a single core. Consider using multiple cores when number of bootstrap samplesR
is a large value.- seed
Random seed.
Value
Returns an object
of class bootstatespace
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of \(\boldsymbol{\hat{\theta}}\).
- vcov
Sampling variance-covariance matrix of \(\boldsymbol{\hat{\theta}}\).
- est
Vector of estimated \(\boldsymbol{\hat{\theta}}\).
- fun
Function used ("PBSSMLinSDEFixed").
- method
Bootstrap method used ("parametric").
Details
Type 0
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) $$ where \(\mathbf{y}_{i, t}\), \(\boldsymbol{\eta}_{i, t}\), and \(\boldsymbol{\varepsilon}_{i, t}\) are random variables and \(\boldsymbol{\nu}\), \(\boldsymbol{\Lambda}\), and \(\boldsymbol{\Theta}\) are model parameters. \(\mathbf{y}_{i, t}\) represents a vector of observed random variables, \(\boldsymbol{\eta}_{i, t}\) a vector of latent random variables, and \(\boldsymbol{\varepsilon}_{i, t}\) a vector of random measurement errors, at time \(t\) and individual \(i\). \(\boldsymbol{\nu}\) denotes a vector of intercepts, \(\boldsymbol{\Lambda}\) a matrix of factor loadings, and \(\boldsymbol{\Theta}\) the covariance matrix of \(\boldsymbol{\varepsilon}\).
An alternative representation of the measurement error is given by $$ \boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right) $$ where \(\mathbf{z}_{i, t}\) is a vector of independent standard normal random variables and \( \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} . \)
The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \left( \boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i, t} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} $$ where \(\boldsymbol{\iota}\) is a term which is unobserved and constant over time, \(\boldsymbol{\Phi}\) is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, \(\boldsymbol{\Sigma}\) is the matrix of volatility or randomness in the process, and \(\mathrm{d}\boldsymbol{W}\) is a Wiener process or Brownian motion, which represents random fluctuations.
Type 1
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) . $$
The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \left( \boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i, t} \right) \mathrm{d}t + \boldsymbol{\Gamma} \mathbf{x}_{i, t} + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} $$ where \(\mathbf{x}_{i, t}\) represents a vector of covariates at time \(t\) and individual \(i\), and \(\boldsymbol{\Gamma}\) the coefficient matrix linking the covariates to the latent variables.
Type 2
The measurement model is given by $$ \mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\kappa} \mathbf{x}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right) $$ where \(\boldsymbol{\kappa}\) represents the coefficient matrix linking the covariates to the observed variables.
The dynamic structure is given by $$ \mathrm{d} \boldsymbol{\eta}_{i, t} = \left( \boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i, t} \right) \mathrm{d}t + \boldsymbol{\Gamma} \mathbf{x}_{i, t} + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t} . $$
State Space Parameterization
The state space parameters as a function of the linear stochastic differential equation model parameters are given by $$ \boldsymbol{\beta}_{\Delta t_{{l_{i}}}} = \exp{ \left( \Delta t \boldsymbol{\Phi} \right) } $$
$$ \boldsymbol{\alpha}_{\Delta t_{{l_{i}}}} = \boldsymbol{\Phi}^{-1} \left( \boldsymbol{\beta} - \mathbf{I}_{p} \right) \boldsymbol{\iota} $$
$$ \mathrm{vec} \left( \boldsymbol{\Psi}_{\Delta t_{{l_{i}}}} \right) = \left[ \left( \boldsymbol{\Phi} \otimes \mathbf{I}_{p} \right) + \left( \mathbf{I}_{p} \otimes \boldsymbol{\Phi} \right) \right] \left[ \exp \left( \left[ \left( \boldsymbol{\Phi} \otimes \mathbf{I}_{p} \right) + \left( \mathbf{I}_{p} \otimes \boldsymbol{\Phi} \right) \right] \Delta t \right) - \mathbf{I}_{p \times p} \right] \mathrm{vec} \left( \boldsymbol{\Sigma} \right) $$ where \(p\) is the number of latent variables and \(\Delta t\) is the time interval.
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See also
Other Bootstrap for State Space Models Functions:
PBSSMFixed()
,
PBSSMOUFixed()
,
PBSSMVARFixed()
Examples
# \donttest{
# prepare parameters
## number of individuals
n <- 5
## time points
time <- 50
delta_t <- 0.10
## dynamic structure
p <- 2
mu0 <- c(-3.0, 1.5)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
iota <- c(0.317, 0.230)
phi <- matrix(
data = c(
-0.10,
0.05,
0.05,
-0.10
),
nrow = p
)
sigma <- matrix(
data = c(
2.79,
0.06,
0.06,
3.27
),
nrow = p
)
sigma_l <- t(chol(sigma))
## measurement model
k <- 2
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
path <- tempdir()
pb <- PBSSMLinSDEFixed(
R = 10L, # use at least 1000 in actual research
path = path,
prefix = "lse",
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0,
ncores = 1, # consider using multiple cores
seed = 42
)
print(pb)
#> Call:
#> PBSSMLinSDEFixed(R = 10L, path = path, prefix = "lse", n = n,
#> time = time, delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l,
#> iota = iota, phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda,
#> theta_l = theta_l, type = 0, ncores = 1, seed = 42)
#>
#> Parametric bootstrap confidence intervals.
#> type = "pc"
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1246 10 -0.4077 -0.0207
#> phi_2_1 0.050 0.2169 10 -0.1814 0.3589
#> phi_1_2 0.050 0.2563 10 -0.1668 0.5459
#> phi_2_2 -0.100 0.2802 10 -0.7522 0.0739
#> iota_1_1 0.317 0.7734 10 -1.4504 0.8892
#> iota_2_1 0.230 0.9178 10 -0.7594 1.8707
#> sigma_1_1 2.790 0.2025 10 2.4148 2.9673
#> sigma_2_1 0.060 0.1534 10 -0.2464 0.2022
#> sigma_2_2 3.270 0.1902 10 2.9992 3.4952
#> theta_1_1 0.001 0.0008 10 0.0000 0.0022
#> theta_2_2 0.001 0.0006 10 0.0000 0.0013
#> mu0_1_1 -3.000 0.0110 10 -3.0157 -2.9836
#> mu0_2_1 1.500 0.0250 10 1.4730 1.5375
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0047
summary(pb)
#> Call:
#> PBSSMLinSDEFixed(R = 10L, path = path, prefix = "lse", n = n,
#> time = time, delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l,
#> iota = iota, phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda,
#> theta_l = theta_l, type = 0, ncores = 1, seed = 42)
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1246 10 -0.4077 -0.0207
#> phi_2_1 0.050 0.2169 10 -0.1814 0.3589
#> phi_1_2 0.050 0.2563 10 -0.1668 0.5459
#> phi_2_2 -0.100 0.2802 10 -0.7522 0.0739
#> iota_1_1 0.317 0.7734 10 -1.4504 0.8892
#> iota_2_1 0.230 0.9178 10 -0.7594 1.8707
#> sigma_1_1 2.790 0.2025 10 2.4148 2.9673
#> sigma_2_1 0.060 0.1534 10 -0.2464 0.2022
#> sigma_2_2 3.270 0.1902 10 2.9992 3.4952
#> theta_1_1 0.001 0.0008 10 0.0000 0.0022
#> theta_2_2 0.001 0.0006 10 0.0000 0.0013
#> mu0_1_1 -3.000 0.0110 10 -3.0157 -2.9836
#> mu0_2_1 1.500 0.0250 10 1.4730 1.5375
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0047
confint(pb)
#> 2.5 % 97.5 %
#> phi_1_1 -4.077282e-01 -0.020726350
#> phi_2_1 -1.813916e-01 0.358896477
#> phi_1_2 -1.668021e-01 0.545918950
#> phi_2_2 -7.522355e-01 0.073878420
#> iota_1_1 -1.450424e+00 0.889158714
#> iota_2_1 -7.593950e-01 1.870666652
#> sigma_1_1 2.414810e+00 2.967317406
#> sigma_2_1 -2.464483e-01 0.202162126
#> sigma_2_2 2.999248e+00 3.495216809
#> theta_1_1 1.017475e-11 0.002190168
#> theta_2_2 2.439758e-14 0.001348227
#> mu0_1_1 -3.015689e+00 -2.983648305
#> mu0_2_1 1.473001e+00 1.537465316
#> sigma0_1_1 5.516864e-28 0.002105120
#> sigma0_2_2 2.465699e-20 0.004749849
vcov(pb)
#> phi_1_1 phi_2_1 phi_1_2 phi_2_2
#> phi_1_1 1.552256e-02 -1.214203e-02 -2.337715e-02 -1.983527e-03
#> phi_2_1 -1.214203e-02 4.703328e-02 3.433472e-02 -3.851923e-02
#> phi_1_2 -2.337715e-02 3.433472e-02 6.571480e-02 -1.225741e-02
#> phi_2_2 -1.983527e-03 -3.851923e-02 -1.225741e-02 7.849204e-02
#> iota_1_1 7.504775e-02 -7.361112e-02 -1.655828e-01 -3.646284e-02
#> iota_2_1 -4.276972e-02 1.253285e-01 1.086847e-01 -2.098571e-01
#> sigma_1_1 1.037976e-02 1.473525e-02 -2.071599e-02 -4.302432e-02
#> sigma_2_1 1.237386e-02 -6.654653e-03 -1.146227e-02 -2.044285e-02
#> sigma_2_2 -4.634435e-03 1.900901e-02 2.181110e-02 -5.262894e-03
#> theta_1_1 -2.367485e-05 4.962387e-05 2.166866e-05 1.206335e-05
#> theta_2_2 2.420195e-05 -1.989012e-05 -1.252671e-05 6.248239e-05
#> mu0_1_1 6.592888e-04 -2.549038e-04 -1.338046e-03 -1.319097e-03
#> mu0_2_1 8.431330e-04 3.906179e-04 -1.703047e-03 1.831875e-03
#> sigma0_1_1 4.025716e-05 -1.714202e-05 -6.940889e-05 -1.252895e-04
#> sigma0_2_2 -5.278016e-05 1.374084e-04 1.433501e-06 -2.316630e-04
#> iota_1_1 iota_2_1 sigma_1_1 sigma_2_1
#> phi_1_1 7.504775e-02 -0.0427697233 1.037976e-02 1.237386e-02
#> phi_2_1 -7.361112e-02 0.1253285161 1.473525e-02 -6.654653e-03
#> phi_1_2 -1.655828e-01 0.1086846549 -2.071599e-02 -1.146227e-02
#> phi_2_2 -3.646284e-02 -0.2098570504 -4.302432e-02 -2.044285e-02
#> iota_1_1 5.981176e-01 -0.0539415490 8.032409e-02 7.237663e-02
#> iota_2_1 -5.394155e-02 0.8424087126 7.522060e-02 4.145535e-02
#> sigma_1_1 8.032409e-02 0.0752205996 4.100248e-02 1.445459e-02
#> sigma_2_1 7.237663e-02 0.0414553460 1.445459e-02 2.352967e-02
#> sigma_2_2 -8.864587e-02 -0.0101400481 3.760631e-03 -6.614318e-03
#> theta_1_1 -1.359188e-04 -0.0001826804 -1.877780e-07 -7.964207e-05
#> theta_2_2 -2.303878e-05 -0.0002331378 -1.370408e-05 -2.538503e-06
#> mu0_1_1 4.343448e-03 0.0013614155 1.415151e-03 9.458768e-04
#> mu0_2_1 2.259898e-03 -0.0112586849 6.469714e-04 -5.023952e-04
#> sigma0_1_1 3.146641e-04 0.0003790998 1.002904e-04 1.005176e-04
#> sigma0_2_2 1.221559e-04 0.0009135827 1.544907e-04 3.352876e-05
#> sigma_2_2 theta_1_1 theta_2_2 mu0_1_1
#> phi_1_1 -4.634435e-03 -2.367485e-05 2.420195e-05 6.592888e-04
#> phi_2_1 1.900901e-02 4.962387e-05 -1.989012e-05 -2.549038e-04
#> phi_1_2 2.181110e-02 2.166866e-05 -1.252671e-05 -1.338046e-03
#> phi_2_2 -5.262894e-03 1.206335e-05 6.248239e-05 -1.319097e-03
#> iota_1_1 -8.864587e-02 -1.359188e-04 -2.303878e-05 4.343448e-03
#> iota_2_1 -1.014005e-02 -1.826804e-04 -2.331378e-04 1.361415e-03
#> sigma_1_1 3.760631e-03 -1.877780e-07 -1.370408e-05 1.415151e-03
#> sigma_2_1 -6.614318e-03 -7.964207e-05 -2.538503e-06 9.458768e-04
#> sigma_2_2 3.615920e-02 4.927267e-05 2.562057e-05 1.388412e-04
#> theta_1_1 4.927267e-05 7.174432e-07 -3.831374e-08 -2.759259e-06
#> theta_2_2 2.562057e-05 -3.831374e-08 3.732333e-07 -2.948589e-06
#> mu0_1_1 1.388412e-04 -2.759259e-06 -2.948589e-06 1.208080e-04
#> mu0_2_1 9.985030e-04 7.573211e-06 7.671619e-06 -6.663468e-05
#> sigma0_1_1 -2.961326e-05 -5.936253e-07 -1.245753e-07 7.684620e-06
#> sigma0_2_2 1.738283e-05 -4.680011e-07 -8.230699e-07 1.483931e-05
#> mu0_2_1 sigma0_1_1 sigma0_2_2
#> phi_1_1 8.431330e-04 4.025716e-05 -5.278016e-05
#> phi_2_1 3.906179e-04 -1.714202e-05 1.374084e-04
#> phi_1_2 -1.703047e-03 -6.940889e-05 1.433501e-06
#> phi_2_2 1.831875e-03 -1.252895e-04 -2.316630e-04
#> iota_1_1 2.259898e-03 3.146641e-04 1.221559e-04
#> iota_2_1 -1.125868e-02 3.790998e-04 9.135827e-04
#> sigma_1_1 6.469714e-04 1.002904e-04 1.544907e-04
#> sigma_2_1 -5.023952e-04 1.005176e-04 3.352876e-05
#> sigma_2_2 9.985030e-04 -2.961326e-05 1.738283e-05
#> theta_1_1 7.573211e-06 -5.936253e-07 -4.680011e-07
#> theta_2_2 7.671619e-06 -1.245753e-07 -8.230699e-07
#> mu0_1_1 -6.663468e-05 7.684620e-06 1.483931e-05
#> mu0_2_1 6.230784e-04 -1.079420e-05 -2.047741e-05
#> sigma0_1_1 -1.079420e-05 8.397469e-07 1.133023e-06
#> sigma0_2_2 -2.047741e-05 1.133023e-06 4.043116e-06
coef(pb)
#> phi_1_1 phi_2_1 phi_1_2 phi_2_2 iota_1_1 iota_2_1 sigma_1_1
#> -0.100 0.050 0.050 -0.100 0.317 0.230 2.790
#> sigma_2_1 sigma_2_2 theta_1_1 theta_2_2 mu0_1_1 mu0_2_1 sigma0_1_1
#> 0.060 3.270 0.001 0.001 -3.000 1.500 0.001
#> sigma0_2_2
#> 0.001
print(pb, type = "bc") # bias-corrected
#> Call:
#> PBSSMLinSDEFixed(R = 10L, path = path, prefix = "lse", n = n,
#> time = time, delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l,
#> iota = iota, phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda,
#> theta_l = theta_l, type = 0, ncores = 1, seed = 42)
#>
#> Parametric bootstrap confidence intervals.
#> type = "bc"
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1246 10 -0.2823 0.0009
#> phi_2_1 0.050 0.2169 10 -0.1814 0.3589
#> phi_1_2 0.050 0.2563 10 -0.1716 0.4011
#> phi_2_2 -0.100 0.2802 10 -0.3240 0.0824
#> iota_1_1 0.317 0.7734 10 -0.8096 0.9456
#> iota_2_1 0.230 0.9178 10 -0.8578 1.5604
#> sigma_1_1 2.790 0.2025 10 2.4148 2.9673
#> sigma_2_1 0.060 0.1534 10 -0.1441 0.2385
#> sigma_2_2 3.270 0.1902 10 2.9992 3.4952
#> theta_1_1 0.001 0.0008 10 0.0000 0.0021
#> theta_2_2 0.001 0.0006 10 0.0000 0.0014
#> mu0_1_1 -3.000 0.0110 10 -3.0157 -2.9862
#> mu0_2_1 1.500 0.0250 10 1.4723 1.5333
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0048
summary(pb, type = "bc")
#> Call:
#> PBSSMLinSDEFixed(R = 10L, path = path, prefix = "lse", n = n,
#> time = time, delta_t = delta_t, mu0 = mu0, sigma0_l = sigma0_l,
#> iota = iota, phi = phi, sigma_l = sigma_l, nu = nu, lambda = lambda,
#> theta_l = theta_l, type = 0, ncores = 1, seed = 42)
#> est se R 2.5% 97.5%
#> phi_1_1 -0.100 0.1246 10 -0.2823 0.0009
#> phi_2_1 0.050 0.2169 10 -0.1814 0.3589
#> phi_1_2 0.050 0.2563 10 -0.1716 0.4011
#> phi_2_2 -0.100 0.2802 10 -0.3240 0.0824
#> iota_1_1 0.317 0.7734 10 -0.8096 0.9456
#> iota_2_1 0.230 0.9178 10 -0.8578 1.5604
#> sigma_1_1 2.790 0.2025 10 2.4148 2.9673
#> sigma_2_1 0.060 0.1534 10 -0.1441 0.2385
#> sigma_2_2 3.270 0.1902 10 2.9992 3.4952
#> theta_1_1 0.001 0.0008 10 0.0000 0.0021
#> theta_2_2 0.001 0.0006 10 0.0000 0.0014
#> mu0_1_1 -3.000 0.0110 10 -3.0157 -2.9862
#> mu0_2_1 1.500 0.0250 10 1.4723 1.5333
#> sigma0_1_1 0.001 0.0009 10 0.0000 0.0021
#> sigma0_2_2 0.001 0.0020 10 0.0000 0.0048
confint(pb, type = "bc")
#> 2.5 % 97.5 %
#> phi_1_1 -2.823085e-01 0.0008998844
#> phi_2_1 -1.813916e-01 0.3588964768
#> phi_1_2 -1.715504e-01 0.4011433985
#> phi_2_2 -3.239992e-01 0.0823962255
#> iota_1_1 -8.095672e-01 0.9456081688
#> iota_2_1 -8.577605e-01 1.5603551714
#> sigma_1_1 2.414810e+00 2.9673174061
#> sigma_2_1 -1.440736e-01 0.2384939164
#> sigma_2_2 2.999248e+00 3.4952168086
#> theta_1_1 2.777357e-12 0.0020779361
#> theta_2_2 4.697258e-12 0.0013545688
#> mu0_1_1 -3.015722e+00 -2.9862201382
#> mu0_2_1 1.472278e+00 1.5332783257
#> sigma0_1_1 2.129691e-24 0.0021456288
#> sigma0_2_2 3.763664e-16 0.0048338734
# }