betaNB: Example Using the DeltaRSqNB Function
Ivan Jacob Agaloos Pesigan
Source:vignettes/example-delta-r-sq-nb.Rmd
example-delta-r-sq-nb.Rmd
Confidence intervals for improvement in R-squared are generated using
the DeltaRSqNB()
function from the betaNB
package. In this example, we use the data set and the model used in betaNB: Example Using the BetaNB
Function.
df <- betaNB::nas1982
Regression
Fit the regression model using the lm()
function.
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)
Nonparametric Bootstrap
nb <- NB(object)
Improvement in R-squared
Normal-Theory Approach
out <- DeltaRSqNB(nb, alpha = 0.05)
Methods
summary
Summary of the results of DeltaRSqNB()
.
Percentile Confidence Intervals
summary(out, type = "pc")
#> Call:
#> DeltaRSqNB(object = nb, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "pc"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0575 5000 0.0815 0.3062
#> PCTGRT 0.1177 0.0495 5000 0.0342 0.2289
#> PCTSUPP 0.0569 0.0347 5000 0.0086 0.1396
Bias Corrected Confidence Intervals
summary(out, type = "bc")
#> Call:
#> DeltaRSqNB(object = nb, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "bc"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0575 5000 0.0951 0.3282
#> PCTGRT 0.1177 0.0495 5000 0.0440 0.2513
#> PCTSUPP 0.0569 0.0347 5000 0.0113 0.1515
Bias Corrected and Accelerated Confidence Intervals
summary(out, type = "bca")
#> Call:
#> DeltaRSqNB(object = nb, alpha = 0.05)
#>
#> Improvement in R-squared
#> type = "bca"
#> est se R 2.5% 97.5%
#> NARTIC 0.1859 0.0575 5000 0.0985 0.3355
#> PCTGRT 0.1177 0.0495 5000 0.0481 0.2643
#> PCTSUPP 0.0569 0.0347 5000 0.0099 0.1446
coef
Return the vector of estimates.
coef(out)
#> NARTIC PCTGRT PCTSUPP
#> 0.1858925 0.1176542 0.0568722
vcov
Return the sampling covariance matrix.
vcov(out)
#> NARTIC PCTGRT PCTSUPP
#> NARTIC 0.0033113309 -0.0002594042 -0.0002189179
#> PCTGRT -0.0002594042 0.0024457004 -0.0002534862
#> PCTSUPP -0.0002189179 -0.0002534862 0.0012009647
confint
Return confidence intervals.
Percentile Confidence Intervals
confint(out, level = 0.95, type = "pc")
#> 2.5 % 97.5 %
#> NARTIC 0.081522422 0.3062433
#> PCTGRT 0.034212070 0.2288758
#> PCTSUPP 0.008608398 0.1395945
Bias Corrected Confidence Intervals
confint(out, level = 0.95, type = "bc")
#> 2.5 % 97.5 %
#> NARTIC 0.09510329 0.3281771
#> PCTGRT 0.04401735 0.2513203
#> PCTSUPP 0.01127660 0.1514531
Bias Corrected and Accelerated Confidence Intervals
confint(out, level = 0.95, type = "bca")
#> 2.5 % 97.5 %
#> NARTIC 0.098526907 0.3354594
#> PCTGRT 0.048066005 0.2643457
#> PCTSUPP 0.009911024 0.1445617