Skip to contents

In this example, a multiple regression model is fitted using program quality ratings (QUALITY) as the regressand/outcome variable and number of published articles attributed to the program faculty members (NARTIC), percent of faculty members holding research grants (PCTGRT), and percentage of program graduates who received support (PCTSUPP) as regressor/predictor variables using a data set from 1982 ratings of 46 doctoral programs in psychology in the USA (National Research Council, 1982). Confidence intervals for the standardized regression coefficients are generated using the BetaNB() function from the betaNB package.

df <- betaNB::nas1982

Regression

Fit the regression model using the lm() function.

object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = df)

Nonparametric Bootstrap

nb <- NB(object)

Standardized Regression Slopes

out <- BetaNB(nb, alpha = 0.05)

Methods

summary

Summary of the results of BetaNB().

Percentile Confidence Intervals

summary(out, type = "pc")
#> Call:
#> BetaNB(object = nb, alpha = 0.05)
#> 
#> Standardized regression slopes
#> type = "pc"
#>            est     se    R   2.5%  97.5%
#> NARTIC  0.4951 0.0738 5000 0.3481 0.6393
#> PCTGRT  0.3915 0.0786 5000 0.2349 0.5449
#> PCTSUPP 0.2632 0.0801 5000 0.1034 0.4175

Bias Corrected Confidence Intervals

summary(out, type = "bc")
#> Call:
#> BetaNB(object = nb, alpha = 0.05)
#> 
#> Standardized regression slopes
#> type = "bc"
#>            est     se    R   2.5%  97.5%
#> NARTIC  0.4951 0.0738 5000 0.3487 0.6395
#> PCTGRT  0.3915 0.0786 5000 0.2382 0.5497
#> PCTSUPP 0.2632 0.0801 5000 0.1074 0.4207

Bias Corrected and Accelerated Confidence Intervals

summary(out, type = "bca")
#> Call:
#> BetaNB(object = nb, alpha = 0.05)
#> 
#> Standardized regression slopes
#> type = "bca"
#>            est     se    R   2.5%  97.5%
#> NARTIC  0.4951 0.0738 5000 0.3501 0.6406
#> PCTGRT  0.3915 0.0786 5000 0.2454 0.5538
#> PCTSUPP 0.2632 0.0801 5000 0.1005 0.4136

coef

Return the vector of estimates.

coef(out)
#>    NARTIC    PCTGRT   PCTSUPP 
#> 0.4951451 0.3914887 0.2632477

vcov

Return the sampling covariance matrix.

vcov(out)
#>               NARTIC       PCTGRT      PCTSUPP
#> NARTIC   0.005446049 -0.003303307 -0.001964976
#> PCTGRT  -0.003303307  0.006176943 -0.002072525
#> PCTSUPP -0.001964976 -0.002072525  0.006409114

confint

Return confidence intervals.

Percentile Confidence Intervals

confint(out, level = 0.95, type = "pc")
#>             2.5 %    97.5 %
#> NARTIC  0.3481358 0.6393478
#> PCTGRT  0.2349313 0.5448702
#> PCTSUPP 0.1033642 0.4175318

Bias Corrected Confidence Intervals

confint(out, level = 0.95, type = "bc")
#>             2.5 %    97.5 %
#> NARTIC  0.3487438 0.6394790
#> PCTGRT  0.2382018 0.5496866
#> PCTSUPP 0.1074482 0.4207306

Bias Corrected and Accelerated Confidence Intervals

confint(out, level = 0.95, type = "bca")
#>             2.5 %    97.5 %
#> NARTIC  0.3500876 0.6405810
#> PCTGRT  0.2454426 0.5538439
#> PCTSUPP 0.1005394 0.4135762

References